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The Experimental Manifestations of 

Hidden Order in URu2Si2 

• The discovery of superconductivity at T=1.5 K and a 

phase transition at T=17.5 K with a large specific heat 

jump in the heavy-fermion material URu2Si2 

• g = 155 mJ/mole K2 

Palstra et al. (1985) 
Maple et al. (1986) 



Experimental Manifestations 

Maple et al. (1986) 

 

Resistivity&Specific 

Heat 

 

• Gap of   10 meV 

 

• 40% of the Fermi-

Surface gapped 



Direct Observation of Gaps 

• Far Infrared Spectroscopy 

(Reflectivity) 
Bonn, Garret and Timusk (1988) 

 

Gaps of 5 and 7.6 meV 

 

2D/kBTHO =  3.6 – 5.1 



Broken Spin-Rotational Invariance 

• Magnetic Torque 
Okazaki et al (2011) 

 

 

 

• Shubnikov-de Haas 
Altarawneh et al (2011) 

 

 

 



• N-fold degenerate localized 5f atomic levels Ef 

• N-fold degenerate conduction band ek 

 

• Hybridization Vfd 

 

 N  Hybridized Bands 

 

• Coulomb Interaction U and Hund’s rule Exchange J 
between 5f electrons on the same atom  

 

 Kondo Effect with a zero magnetic moment  
Localized 5f spin Sz=N/2 screened by a compensating cloud of conduction 

electrons with spin Sz=-N/2 (forming a spin singlet) 

The Compensated Anderson Lattice 



The Under-Compensated  

Anderson Lattice 
• N-fold degenerate semi-localized 5f bands (small direct hopping) 

• 1 (spin-only degenerate) non-degenerate itinerant conduction band 

 

• Hybridization Vfd 

 

  Hybridized Band and (N-1) Unhybridized bands 

 

• Coulomb Interaction U and Hund’s rule Exchange J between the 5f 
electrons on the same atom (forms a net atomic spin) 

 

 Kondo Effect but also yields a net moment of (N-1)/2 
Nozieres and Blandin (1980) 

 

Uranium Monochalcogenides and Pnictides 

Kondo Effect and Magnetic Ordering 



The Bare Bands 

Bands: 

Two degenerate 5f bands 

One conduction band  

(nearest neighbour tight-binding) 

Hybridization Vfd between  the 

conduction and the 5f a band 

5f a Characters of upper and 

lower hybridized bands 

The 5f b band is unhybridized 

Note that for most k values the a  

and b bands have their relative 

energies shifted by an amount 

Vfd
2 

(Depending on m, they have roughly the 

same nesting vectors, Q) 

Q 



Normal State Density of States 

Hybridized 5f-a states (blue) 

 

Total hybridized f a plus conduction (d) band 

DOS (black) 

 

Direct Hybridization Gap  2N Vfd 

(below Fermi energy) 

 

Unhybridzed 5f-b states (red) 

(N-1)-fold degenerate  

 

Chemical potential m in the upper heavy a 5f 

band 

 

 

Model for Hidden Order 

Physical Review B, 85, 165116 

(2012) 

2 2 Vfd 

m 



Spin Rotationally Invariant  

Coulomb Interactions 

U is the direct Coulomb Interaction 

J is the Hund’s rule exchange                                   (Here, N is the number of lattice sites) 

        - J Sci . Sc’i 

As can be seen by commuting the annihilation operators, the last term is equivalent to the 

spin-flip part of the Hund’s rule exchange between orbital c and c’ 

 

 

But we view it as a spin conserving hopping process involving a spin-up electron and a spin-

down electron 

- J/2 ( S+
c,i S

-
c’,i + S-

c,i S
+

c’,i ) 



A possibility for the hidden order parameter is ZQ 

                ZQ = 1/N k,s s  < f+b
k+Q,s fa

k,s > 

 

which is driven by the spin-flip part of the Hund’s rule exchange J. 

It only connect states with different orbital indices (a,b).  

(no net spin) 

(broken spin-rotational invariance, and produces an x-y anisotropy) 

It can be complex (broken gauge invariance) 

 

See also: Tanmoy Das, Scientific Reports, (2012). 

 

 

A Hidden Order Parameter 



• Linearize the (spin-flip Hund’s rule) interactions (momentum indices supressed) 

 

                             + J f+,b
 fa

 < f+,a
 fb

 >Q + J f+,a
 fb

 < f+,b
 fa

 >Q  

                                           - J < f+,b
 fa

 >Q < f+,a
 fb

 >Q  

                                             + Hermitean conjugate 
 

What if?             < f+,b
 fa

 >Q  =  -  < f+,b
 fa

 >Q  

 
 

(1) The energy would be lowered by DE compared to the normal state defined by  

 < f+,b
s fa

s >Q = 0 ,      DE  =  - s  J  |  < f+,b
s fa

s >Q  |2 

 

(2)  Spin-dependent (inter-orbital) Hybridization: (with momentum transfer Q) 

 

                     Hhyb = + k ( J  < f+,b
 fa

 >Q f+,a
k-Q fb

k  + H.c.  ) 

                                - k  ( J  < f+,b
 fa

 >Q  f+,a
k-Q fb

k  + H.c.  )  

 

A Mean-Field Approximation 



                   a+
k, = ½ ( f+,a

k+Q, +  f+,b
k, ) 

                            a
+

k, = ½  ( f+,a
k+Q, -  f+,b

k, )   

(spin-dependent hybridized 5f bands)  

Not sensitive to an (spin-independent) orbital measurement  
 

               ½  |  
a

k+Q + b
k |

2 + ½ | 
a

k+Q – 
b

k |
2 

 

                       =     | a
k+Q |

2 + | b
k |

2 

  (same result as in the normal state where there are no interference terms) 

The spin-up orbital density wave is compensated by a spin down orbital density wave. 

 

 

Requires Fermi-surface nesting in the normal state! 

 

A Mean-Field Approximation 



Fermi-surface Interband Nesting 

Q 

Intraband: 

a-a blue to blue 

b-b red to red 

Interband: 

b-a red to blue 

Note: The red b and blue a 5f bands 

are not degenerate but are shifted by a 

hybridization gap with a very small 

energy of the order Vfd
2/W. 

 

Wan-Kyu Park  et al. Phys. Rev. Lett. 

(2012).  

 

The states on the Fermi-surfaces of 

the a and b bands are connected by 

the nesting vector Q (b,k) (a,k+Q) 

m m 



• Effect of energy shift due to hybridization on 

inter and intraband nesting: relative shift of 

Fermi-energy 

Schematic in 2d: 

Fermi-surface Interband Nesting 



Nesting and Pressure 

The red b and blue a 5f bands are not 

degenerate but are shifted by a very small 

energy of the order Vfd
2/W. 



The Linearized Gap Equation 

1. The equations are odd in z and posses a trivial solution zQs= 0 for T > THO 

 

2. The interband susceptibility cab(Q,0) is positive, and large , if there is inter-band nesting.  

 

3. The Hund’s rule J exchange is enhanced by the Coulomb interaction U, 

                             1= J cab(Q)/[1-(U-J) cab(Q)] 

 

4.    At the critical temperature T=THO, one has an (infinitesimal)  non-zero solution  

   with zQ,s = - zQ,-s 

 

 



Nesting and Adiabatic Continuity 

LDA Peter Oppeneer (2011) 

Two nesting vectors in URu2Si2: One is Commensurate and one is 

Incommensurate. 
dHvA Hassinger (2010)  

Q0=(0,0,1)                     Q0=(0,0,1) 

 

Hidden Ordering,     Magnetic Ordering 



Adiabatic Continuity? 

• Change m (fixed Vfd) 
Criterion for Instability  (U=J) 

1/U = caa(Q,0) + cbb(Q,0) 

Antiferromagnetism 

Hidden Order  

1/U = cab(Q,0) 

Antiferromagnetism 

(separated by m the order of Vfd
2/W) 

 

• Adiabatic Continuity: 

either Vfd 0 or W increases 
AF and HO instabilities  

become degenerate 



The Gap Equation 

m=0.32 

2|k(0)|/kBTc=4.54 



f- Quasiparticle Bands 

Fermi Energy m 

Hidden Order Gaps 



Asymmetric HO Gap in DOS 

Anayajian et al. (2010) 

 

60% Fermi Surface Gapped 

 

Asymmetric HO Gap 

The Hidden Order Transition produces a  

pseudo-gap in the DOS. 

Hidden Order PseudoGap 

Direct Hybridization Gap 

 

m 



Magnetic Nematicity 

• Broken Spin Rotational Invariance (V=0) 
upper gap edge state (unoccupied) 

                                  ( 
a

k+Q† + b
k † )/2              ( 

a
k+Q ↓ – 

b
k ↓ )/2 

lower gap edge state (occupied) 

                                  ( 
a

k+Q† - b
k † )/2              ( 

a
k+Q ↓ + 

b
k ↓ )/2 

 

Band Gap                     2 J |zs| 

 

• Zeeman Interaction (orientational dependence wrt to the z axis) 

 Parallel                - mB H
z sz  

Matrix elements between occupied and unoccupied states are zero 

No field dependence of the Energy      c = 0 

     Perpendicular  - mB H
x sx 

Matrix elements between occupied and unoccupied states are unity 

Field dependence of the Energy 

             -  ( mB H
x )2/ 2 J |zs| 



Magnetic Nematicity 

• Perpendicular susceptibility V=0 
 

Matrix elements   mB J z / ( (k)2 + J2 z2 ) 

 

Gap                       2 ( (k)2 + J2 z2 )  

  

Susceptibility  

                       mB
2

   d (m)        J2 z2           .                        

                                               ( 2 + J2 z2 )3/2 

Nominally proportional to order parameter squared, but 

                                   c     4 mB
2

  (m)  



• Quasiparticle Dispersion Relations in Field 

(V=0) 

• Field Parallel to z   2mBHz 

Spin Split Bands 

 

 

• Field Perpendicular to z 

Coupled Bands 

 

Magnetic Nematicity 



Quantum Critical Point?  

Continuous Transition ends with a line of 

First-order Transitions? 

 
Marcelo Jaime et al.  (2002). 

On decreasing J one expects to reach a 

Quantum Critical Point. However: 

 

Self consistency conditions for  the gap as a 

function of U-1 for different T, for m slightly off 

from the ideal nesting value 

 

 U-1=cab(T,zQ) 

 

U-1<14 Second-order 

U-1>14 First-order 

m=0.318 

Riseborough&Magalhaes 



QCP &Discontinuous Transition 

Eleonir Joao Calegari 



Conclusions 

• For systems with more than 
one occupied 5f band, there 
may be order parameters 
corresponding to the 
spontaneous (spatially 
inhomogeneous) mixing of the 
5f bands, i.e. 

 

k,s s < f+b
k+Q,s fa

k,s >   0 

 

• The transition has broken spin-
rotational invariance but 
doesn’t have a staggered 
moment. 

  (Magnetic Nematicity) 

• The Hund’s rule exchange J 
may stabilize an inter-orbital 
spin density wave 

 

     k,s s < f+b
k+Q,s fa

k,s >     0 

  

• The pseudogap in the DOS has 
a magnitude of U zQ,s  

 

• The Hund’ rule mechanism 
could equally apply to 
transition metals.  

      (eg Fe-pnictides, especially 
where there is magnetic 
nematicity.) 



f Quasiparticle Bands 

Weights and Dispersion 

5f bands of a character 5f bands of b character 



Quasiparticle Conduction Bands 

Bands and weights with d character 


