

Peter S. Riseborough
Temple Univ., Philadelphia
S.G. Magalhaes
Univ. Fed. Fluminense, Niteroi
B. Coqblin †
CNRS-Univ. Paris-Sud, Orsay
E.J. Calegari
Univ. Fed. Santa Maria

Acknowledgements

Collaborators:Sergio Magalhaes

Inst. Fis., Univ. Federale Fluminense Niteroi, Rio de Janeiro

Bernard Coqblin †

Laboratoire de Physique des Solides, CNRS-Université Paris-Sud, 91405-Orsay

Financial Support:
 US Department of Energy
 Office of Basic Energy Science
 Materials Science

Outline

- Experiments on URu₂Si₂
- The Order Parameter

- The Under-Compensated Anderson Lattice Model
- A Mean-field Approximation

A Bare Band Structure

• Magnetic Nematicity

• The spin-rotationally invariant Coulomb interactions

Conclusions

The Experimental Manifestations of Hidden Order in URu₂Si₂

- The discovery of superconductivity at T=1.5 K and a phase transition at T=17.5 K with a large specific heat jump in the heavy-fermion material URu₂Si₂
- $\gamma = 155$ mJ/mole K²

Maple et al. (1986)

Experimental Manifestations

Maple et al. (1986)

Resistivity&Specific Heat

• Gap of $\sim 10 \text{ meV}$

• 40% of the Fermi-Surface gapped

Direct Observation of Gaps

Far Infrared Spectroscopy

(Reflectivity)

Bonn, Garret and Timusk (1988)

Gaps of 5 and 7.6 meV

$$2\Delta/k_BT_{HO} = 3.6 - 5.1$$

FIG. 1. The reflectance of URu_2Si_2 above the coherence temperature, below the coherence temperature, and below the Néel temperature.

Broken Spin-Rotational Invariance

 Magnetic Torque Okazaki et al (2011)

Figure 3: (a) Schematic configuration of the magnetic torque measurements for ab-plane field rotation by using the micro-cantilever technique. The magnetic field H (blue arrow) induces the magnetization M (green arrow) in the URu₂Si₂ crystal. The torque along the c axis (red arrow) can be detected by the change in the piezo resister, which is measured by the bridge configuration. (b) Upper panels show raw magnetic torque curves as a function of the azimuthal angle ϕ at several temperatures. All data are measured at $|\mu_0 H| = 4$ T. Middle and lower panels show twofold $\tau_{2\phi}$ and fourfold $\tau_{4\phi}$ components of the torque curves which are obtained from the Fourier analysis.

Shubnikov-de Haas

Altarawneh et al (2011)

FIG. 3 (color online). (a) Schematic showing band polarization caused by Zeeman splitting, resulting in the depopulation of the minority spin component above H_p defined in Eq (1). (b) Polar plot of the measured θ -dependent effective g factor in URu₂Si₂ [19,27] (black symbols) together with a fit to $g^* = g_z \cos\theta$ (black line), where $g_z = 2.6$ (assuming $\frac{1}{2}$ pseudospins), and its comparison with an isotropic g=2 (red line). (c) Schematic of the field-dependent cross-sectional areas of the up-spin and down-spin components for a single pocket, together with the "back projected" quantum oscillation frequency before F and after $F + \Delta F$ polarization. (d) The same schematic in which the frequency shift $\Delta F'$ is reduced by additional pockets acting as a charge reservoir.

The Compensated Anderson Lattice

- N-fold degenerate localized 5f atomic levels E_f
- N-fold degenerate conduction band e_k
- Hybridization V_{fd}
- → N Hybridized Bands
- Coulomb Interaction U and Hund's rule Exchange J between 5f electrons on the same atom
- → Kondo Effect with a zero magnetic moment

Localized 5f spin S^z=N/2 screened by a compensating cloud of conduction electrons with spin S^z=-N/2 (forming a spin singlet)

The Under-Compensated Anderson Lattice

- N-fold degenerate semi-localized 5f bands (small direct hopping)
- 1 (spin-only degenerate) non-degenerate itinerant conduction band
- Hybridization V_{fd}
- → Hybridized Band and (N-1) Unhybridized bands
- Coulomb Interaction U and Hund's rule Exchange J between the 5f electrons on the same atom (forms a net atomic spin)
- → Kondo Effect but also yields a net moment of (N-1)/2 Nozieres and Blandin (1980)

Uranium Monochalcogenides and Pnictides Kondo Effect and Magnetic Ordering

& Norius

The Bare Bands

Bands:

Two degenerate 5f bands One conduction band (nearest neighbour tight-binding) Hybridization V_{fd} between the conduction and the 5f α band

5f α Characters of upper and lower hybridized bands

The 5f β band is unhybridized

Note that for most k values the α and β bands have their relative energies shifted by an amount $V_{fd}^{\ 2}$

(Depending on μ , they have roughly the same nesting vectors, Q)

Normal State Density of States

Hybridized $5f-\alpha$ states (blue)

Total hybridized f α plus conduction (d) band DOS (black)

Direct Hybridization Gap $\sim 2\sqrt{N} V_{fd}$ (below Fermi energy)

Unhybridzed 5f-β states (red) (N-1)-fold degenerate

Chemical potential μ in the upper heavy α 5f band

Model for Hidden Order Physical Review B, 85, 165116 (2012)

Spin Rotationally Invariant Coulomb Interactions

The Coulomb interaction can be re-written in the form

$$\hat{H}_{int} = \left(\frac{U-J}{2N}\right) \sum_{\underline{k},\underline{k}',\underline{q},\sigma,\chi\neq\chi'} f_{\underline{k}+\underline{q},\sigma}^{\dagger,\chi} f_{\underline{k},\sigma}^{\chi} f_{\underline{k}'-\underline{q},\sigma}^{\dagger,\chi'} f_{\underline{k}',\sigma}^{\chi'} + \left(\frac{U}{2N}\right) \sum_{\underline{k},\underline{k}',\underline{q},\sigma,\chi,\chi'} f_{\underline{k}+\underline{q},\sigma}^{\dagger,\chi} f_{\underline{k},\sigma}^{\chi} f_{\underline{k}'-\underline{q},-\sigma}^{\dagger,\chi'} f_{\underline{k}',-\sigma}^{\chi'} + \left(\frac{J}{2N}\right) \sum_{\underline{k},\underline{k}',q,\sigma,\chi\neq\chi'} f_{\underline{k}+\underline{q},\sigma}^{\dagger,\chi} f_{\underline{k},\sigma}^{\chi'} f_{\underline{k}'-\underline{q},-\sigma}^{\dagger,\chi'} f_{\underline{k}',-\sigma}^{\chi}$$

$$(7)$$

U is the direct Coulomb Interaction J is the Hund's rule exchange

(Here, N is the number of lattice sites)

- J
$$\underline{\mathbf{S}}_{\chi i}$$
 . $\underline{\mathbf{S}}_{\chi' i}$

As can be seen by commuting the annihilation operators, the last term is equivalent to the **spin-flip part of the Hund's rule exchange** between orbital χ and χ '

$$- J/2 (S^{+}_{\chi,i} S^{-}_{\chi',i} + S^{-}_{\chi,i} S^{+}_{\chi',i})$$

But we view it as a spin conserving hopping process involving a spin-up electron and a spin-down electron

A Hidden Order Parameter

A possibility for the hidden order parameter is Z_Q

$$Z_Q = 1/N \sum_{k,\sigma} \sigma < f^{+\beta}_{k+Q,\sigma} f^{\alpha}_{k,\sigma} >$$

which is driven by the spin-flip part of the Hund's rule exchange J.

It only connect states with different orbital indices (α, β) .

(no net spin)

(broken spin-rotational invariance, and produces an x-y anisotropy) It can be complex (broken gauge invariance)

See also: Tanmoy Das, Scientific Reports, (2012).

A Mean-Field Approximation

• Linearize the (spin-flip Hund's rule) interactions (momentum indices supressed)

$$\begin{array}{c} + \ J \ f^{+,\beta} \uparrow \ f^{\alpha} \uparrow < f^{+,\alpha} \downarrow \ f^{\beta} \downarrow >_{Q} + \ J \ f^{+,\alpha} \downarrow \ f^{\beta} \downarrow < f^{+,\beta} \uparrow \ f^{\alpha} \uparrow >_{Q} \\ - \ J < f^{+,\beta} \uparrow \ f^{\alpha} \uparrow >_{Q} < f^{+,\alpha} \downarrow \ f^{\beta} \downarrow >_{Q} \\ + \ Hermitean \ conjugate \end{array}$$

What if?
$$\langle \mathbf{f}^{+,\beta} \uparrow \mathbf{f}^{\alpha} \uparrow \rangle_{\mathbf{Q}} = - \langle \mathbf{f}^{+,\beta} \downarrow \mathbf{f}^{\alpha} \downarrow \rangle_{\mathbf{Q}}$$

(1) The energy would be lowered by ΔE compared to the normal state defined by

$$<\mathbf{f}^{+,\beta}_{\sigma}\mathbf{f}^{\alpha}_{\sigma}>_{\mathbf{Q}}=0$$
, $\Delta E=-\Sigma_{\sigma}\mathbf{J}\mid<\mathbf{f}^{+,\beta}_{\sigma}\mathbf{f}^{\alpha}_{\sigma}>_{\mathbf{Q}}\mid^{2}$

(2) **Spin-dependent (inter-orbital) Hybridization:** (with momentum transfer Q)

$$H_{hyb} = + \sum_{k} (J < f^{+,\beta} \uparrow f^{\alpha} \uparrow >_{Q} f^{+,\alpha}_{k-Q\downarrow} f^{\beta}_{k\downarrow} + H.c.)$$

$$= \sum_{k} (J < f^{+,\beta} \uparrow f^{\alpha} \uparrow >_{Q} f^{+,\alpha}_{k-Q\uparrow} f^{\beta}_{k\uparrow} + H.c.)$$

A Mean-Field Approximation

$$a^{+}_{k,\uparrow} = \sqrt{1/2} \left(f^{+,\alpha}_{k+Q,\uparrow} + f^{+,\beta}_{k,\uparrow} \right)$$

 $a^{+}_{k,\downarrow} = \sqrt{1/2} \left(f^{+,\alpha}_{k+Q,\downarrow} - f^{+,\beta}_{k,\downarrow} \right)$

(spin-dependent hybridized 5f bands)

Not sensitive to an (spin-independent) orbital measurement

$$\frac{1}{2} | \Psi^{\alpha}_{k+Q} + \Psi^{\beta}_{k}|^{2} + \frac{1}{2} | \Psi^{\alpha}_{k+Q} - \Psi^{\beta}_{k}|^{2} \\
= | \Psi^{\alpha}_{k+Q}|^{2} + | \Psi^{\beta}_{k}|^{2}$$

(same result as in the normal state where there are no interference terms)

The spin-up orbital density wave is compensated by a spin down orbital density wave.

Requires Fermi-surface nesting in the normal state!

Fermi-surface Interband Nesting

The states on the Fermi-surfaces of the α and β bands are connected by the nesting vector $\underline{\mathbb{Q}}$

Interband:

 β - α red to blue

Intraband:

 α - α blue to blue β - β red to red

Note: The red β and blue α 5f bands are not degenerate but are shifted by a hybridization gap with a very small energy of the order V_{fd}^2/W .

Wan-Kyu Park et al. Phys. Rev. Lett. (2012).

Fermi-surface Interband Nesting

• Effect of energy shift due to hybridization on inter and intraband nesting: relative shift of

Fermi-energy

Schematic in 2d:

Nesting and Pressure

The red β and blue α 5f bands are not degenerate but are shifted by a very small energy of the order V_{fd}^2/W .

The Linearized Gap Equation

$$\left[1 - (U - J)\chi_{f,\sigma}^{\alpha,\beta,(0)}(\underline{Q},0)\right] z_{\underline{Q},\sigma}^* = -z_{\underline{Q},-\sigma}^* J \chi_{f,\sigma}^{\alpha,\beta}(\underline{Q},0),$$

$$\left[1 - (U - J)\chi_{f,-\sigma}^{\alpha,\beta,(0)}(\underline{Q},0)\right] z_{\underline{Q},-\sigma}^* = -z_{\underline{Q},\sigma}^* J \chi_{f,-\sigma}^{\alpha,\beta}(\underline{Q},0),$$

where

$$\chi_{f,\sigma}^{\alpha,\beta,(0)}(\underline{Q},0) = \frac{1}{N} \sum_{\underline{k},\pm} |A_{\sigma}^{\pm}(\underline{k})|^2 \left(\frac{f[E_{\sigma}^{\pm}(\underline{k})] - f[E_{f,\sigma}^{\beta}(\underline{k} + \underline{Q})]}{E_{f,\sigma}^{\beta}(\underline{k} + \underline{Q}) - E_{\sigma}^{\pm}(\underline{k})} \right).$$

- 1. The equations are odd in z and posses a trivial solution $z_{Q\sigma} = 0$ for $T > T_{HO}$
- 2. The interband susceptibility $\chi^{\alpha\beta}(Q,0)$ is positive, and large, if there is inter-band nesting.
- 3. The Hund's rule J exchange is enhanced by the Coulomb interaction U, $1 = J \chi^{\alpha\beta}(Q)/[1-(U-J)\chi^{\alpha\beta}(Q)]$
- 4. At the critical temperature $T=T_{HO}$, one has an (infinitesimal) non-zero solution with $\mathbf{z}_{\mathbf{Q},\sigma} = -\mathbf{z}_{\mathbf{Q},-\sigma}$

Nesting and Adiabatic Continuity

FIG. 3. (Color online) Band characters of the energy dispersions of URu₂Si₂ in the bct BZ. Green/light gray symbols illustrate the U $5\,f_{5/2}\,j_z=\pm 5/2$ character, blue/dark gray symbols the $j_z=\pm 3/2$ character, and red/gray symbols the $j_z=\pm 1/2$ character (for the symmetry points used, see Ref. 35).

FIG. 2. (Color online) Cross section of the bct BZ displaying an imperfect nesting of the FS sheets No. 1 and 2 at Q_0 . FS sheet No. 2 has additionally been shifted by Q_0 , shown by the thin curve, to illustrate the imperfect nesting. The cross section is spanned by the k_z and k_x axes. Cross sections of two other existing FS pockets are shown at the Γ and Z points.

LDA Peter Oppeneer (2011)

Two nesting vectors in URu₂Si₂: One is Commensurate and one is Incommensurate.

dHvA Hassinger (2010)

$$Q_0 = (0,0,1)$$

$$Q_0 = (0,0,1)$$

Magnetic Ordering

Hidden Ordering,

Adiabatic Continuity?

• Change μ (fixed V_{fd})

Criterion for Instability (U=J)

 $1/U = \chi^{\alpha\alpha}(\mathbf{Q},0) + \chi^{\beta\beta}(\mathbf{Q},0)$

Antiferromagnetism

Hidden Order

 $1/U = \chi^{\alpha\beta}(Q,0)$

Antiferromagnetism

(separated by μ the order of V_{fd}^2/W)

• Adiabatic Continuity: either $V_{fd} \rightarrow 0$ or W increases AF and HO instabilities become degenerate

The Gap Equation

$$z_{\underline{Q},\sigma}^* \ = \ - \ \frac{1}{N} \ \sum_{k} \ \Big[\ \int_{C} \ \frac{d\omega}{2\pi i} \ f(\omega) \ G_{ff,\sigma}^{\beta,\alpha}(\underline{k} + \underline{Q},\underline{k},\omega) \ \Big],$$

The Hartree-Fock f band dispersion relation $E_{f,\sigma}^{\chi}(\underline{k})$ is given by

$$E_{f,\sigma}^{\chi}(\underline{k}) = E_f^{\chi}(\underline{k}) + \sum_{\chi'} \left((U - J) n_{f,\sigma}^{\chi'} (1 - \delta^{\chi,\chi'}) + U n_{f,-\sigma}^{\chi'} \right)$$

and the gap parameter $\kappa_{Q,\sigma}$ is defined as the complex number

$$\kappa_{Q,\sigma} = J z_{-Q,-\sigma} - (U - J) z_{-Q,\sigma}$$

The mixed character 5f Green's function is given by

$$G_{ff,\sigma}^{\beta,\alpha}(\underline{k},\underline{k}',\omega) = \frac{\kappa_{\underline{Q},\sigma}^* (\omega - \epsilon(\underline{k} + \underline{Q})) \delta^{\alpha,\chi'} \delta_{\underline{k} + \underline{Q},\underline{k}'}}{D_{\sigma}(\underline{k} + \underline{Q},\omega)}$$

where the denominator is given by

$$D_{\sigma}(\underline{k},\omega) = \left[\left(\omega - E_{f,\sigma}^{\beta}(\underline{k} + \underline{Q}) \right) \left(\omega - E_{f,\sigma}^{\alpha}(\underline{k}) \right) - |\kappa_{\underline{Q},\sigma}|^{2} \right] \left(\omega - \epsilon(\underline{k}) \right) - |V_{\alpha}(\underline{k})|^{2} \left(\omega - E_{f,\sigma}^{\beta}(\underline{k} + \underline{Q}) \right)$$

$$- |V_{\alpha}(\underline{k})|^{2} \left(\omega - E_{f,\sigma}^{\beta}(\underline{k} + \underline{Q}) \right)$$

$$2|\kappa(0)|/k_{B}T_{c}=4.54$$

f- Quasiparticle Bands

Asymmetric HO Gap in DOS

Anayajian et al. (2010)

60% Fermi Surface Gapped

Asymmetric HO Gap

The Hidden Order Transition produces a pseudo-gap in the DOS.

Magnetic Nematicity

Broken Spin Rotational Invariance (V=0)

upper gap edge state (unoccupied)

$$(\Psi^{\alpha}_{k+O^{\dagger}} + \Psi^{\beta}_{k \dagger})/\sqrt{2}$$

$$(\Psi^{\alpha}_{k+Q\dagger} + \Psi^{\beta}_{k\dagger})/\sqrt{2}$$
 $(\Psi^{\alpha}_{k+Q\downarrow} - \Psi^{\beta}_{k\downarrow})/\sqrt{2}$

lower gap edge state (occupied)

$$(\Psi^{\alpha}_{k+O^{\dagger}} - \Psi^{\beta}_{k \dagger})/\sqrt{2}$$

$$(\Psi^{\alpha}_{k+Q\dagger} - \Psi^{\beta}_{k\dagger})/\sqrt{2} \qquad (\Psi^{\alpha}_{k+Q\downarrow} + \Psi^{\beta}_{k\downarrow})/\sqrt{2}$$

Band Gap

 $2 J |z_{\alpha}|$

• Zeeman Interaction (orientational dependence wrt to the z axis)

Parallel

$$-\mu_B H^z \sigma^z$$

Matrix elements between occupied and unoccupied states are zero

No field dependence of the Energy $\therefore \chi = 0$

$$\therefore \chi = 0$$

Perpendicular $-\mu_{\rm B} H^{\rm x} \sigma^{\rm x}$

$$-\mu_{\rm B}H^{\rm x}\sigma^{\rm x}$$

Matrix elements between occupied and unoccupied states are unity Field dependence of the Energy

$$- (\mu_B H^x)^2 / 2 J |z_{\sigma}|$$

Magnetic Nematicity

Perpendicular susceptibility V

Matrix elements $\mu_B J z / \sqrt{(\epsilon(k)^2 + J^2 z^2)}$

Gap
$$2 \sqrt{(\varepsilon(k)^2 + J^2 z^2)}$$

Susceptibility

$$\mu_B^2 \int d\epsilon \, \rho(\mu) \, \underline{J^2 \, z^2} \, .$$

$$(\epsilon^2 + J^2 \, z^2)^{3/2}$$

Nominally proportional to order parameter squared, but

$$\chi \sim 4 \mu_B^2 \rho(\mu)$$

Magnetic Nematicity

Quasiparticle Dispersion Relations in Field
 (V=0)

• Field Parallel to z $2\mu_B H^z$ Spin Split Bands

Field Perpendicular to z
 Coupled Bands

Quantum Critical Point?

Continuous Transition ends with a line of First-order Transitions?

Marcelo Jaime et al. (2002).

On decreasing J one expects to reach a **Quantum Critical Point**. However:

Self consistency conditions for the gap as a function of U^{-1} for different T, for μ slightly off from the ideal nesting value

$$U^{-1} = \chi^{\alpha\beta}(T, z_Q)$$

U⁻¹<14 Second-order U⁻¹>14 First-order

Riseborough&Magalhaes

QCP & Discontinuous Transition

Figure 4: The gap $\kappa^{\alpha\beta}_{-Q,-\sigma}$ as function of k_BT for J=0.075,~D=0.60 and different intensities of the magnetic field h.

Eleonir Joao Calegari

Figure 5: Phase diagram as function of the magnetic field h.

Conclusions

• For systems with more than one occupied 5f band, there may be order parameters corresponding to the spontaneous (spatially inhomogeneous) mixing of the 5f bands, i.e.

$$\Sigma_{k,\sigma} \sigma < f^{+\beta}_{k+O,\sigma} f^{\alpha}_{k,\sigma} > \neq 0$$

 The transition has broken spinrotational invariance but doesn't have a staggered moment.
 (Magnetic Nematicity) The Hund's rule exchange J may stabilize an inter-orbital spin density wave

$$\Sigma_{k,\sigma} \sigma < f^{+\beta}_{k+Q,\sigma} f^{\alpha}_{k,\sigma} > \neq 0$$

- The pseudogap in the DOS has a magnitude of $U z_{Q,\sigma}$
- The Hund' rule mechanism could equally apply to transition metals.

(eg Fe-pnictides, especially where there is magnetic nematicity.)

f Quasiparticle Bands

Weights and Dispersion

5f bands of α character

5f bands of β character

Quasiparticle Conduction Bands

Bands and weights with d character