Inflation, Gravity Waves, and Dark Matter

Qaisar Shafi

Bartol Research Institute Department of Physics and Astronomy University of Delaware

Feb 2015 University of Virginia Charlottesville, VA

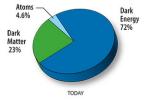
Units

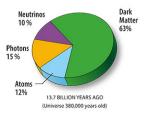
◆□▶ ◆□▶ ◆三▶ ◆三▶ 三回 めへで

•
$$\hbar = c = k_B = 1$$

- $M_P = 1.2 \ge 10^{19} \text{ GeV} (m_P = 2.4 \ge 10^{18} \text{ GeV})$
- $l_P = 1.6 \text{ x } 10^{-33} \text{ cm}, t_P = 5.4 \text{ x } 10^{-44} \text{ sec}$
- G = Newton's constant $= M_P^{-2}$
- $\text{GeV}^{-1} = 10^{-14} \text{ cm} = 10^{-24} \text{ sec}$
- $1 \text{ MeV} = 10^{10} \text{ K}$

ACDM Model (current paradigm)

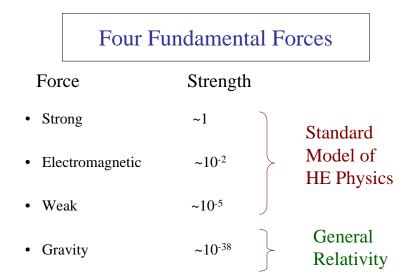

A stands for Dark Energy with Einstein's cosmological constant being the leading candidate


($P_{\Lambda} = w_{\Lambda} \rho_{\Lambda}$, with $w_{\Lambda} = -1$)

$$\rho_{Total} = \rho_{\Lambda} + \rho_{CDM} + \rho_{M} \approx \rho_{c}$$

$$\rho_{\Lambda} \approx 10^{-120} m_P^4 \leftarrow$$
 Fine tuning?

CDM denotes 'cold dark matter' (particle have tiny velocities)

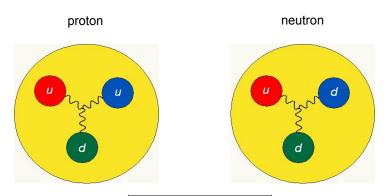


・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・

Image courtesy of NASA / WMAP Science Team

Where does ΛCDM come from?

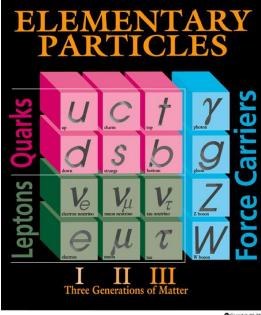
STANDARD MODEL OF HE PHYSICS


Provides excellent description of strong, weak and electromagnetic interactions.

Based on local gauge symmetry

$$\underbrace{SU(3)_c \times SU(2)_L \times U(1)_Y}_{\uparrow}$$

QCD - strong interactions involving 'colored' quarks & gluons Electromagnetic and weak interactions mediated by W^{\pm} , Z^{0} bosons and γ , which have been found


Only 'color neutral' states exist in nature

Color neutral 'atoms'

・ロ・・(四・・)を注・・(注・・)注

Two Key features: Color confinement; Asymptotic freedom;

Higgs Boson

• Spin zero particle from spontaneous breaking of electroweak symmetry:

$$SU(2)_L \times U(1)_Y \xrightarrow{\langle \phi \rangle} U(1)_{\rm EM}$$

$$\langle \phi \rangle \sim 10^2 \ {\rm GeV}(t \sim 10^{-10} \ {\rm sec})$$

 $m_h \approx 125 {
m GeV}$ (Huge discovery announced by ATLAS and CMS on July 4, 2012)

▲□▶ ▲□▶ ▲目▶ ▲目▶ 目 のへの

• Compare: Superconductor (Cooper pairs $\longleftrightarrow \langle \phi \rangle$)

IS THERE "NEW" PHYSICS BEYOND THE STANDARD MODEL?

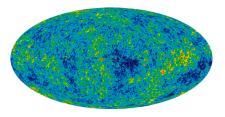
Most Likely Yes!

1) Neutrino Oscillations (solar & atmospheric): These require non-zero (albeit 'tiny') neutrino masses $\sim 10^{-1} - 10^{-2}$ eV.

In the SM, neutrinos have zero mass.

2) Dark Matter (non-baryonic)SM has no plausible DM candidate

Oscillation Data

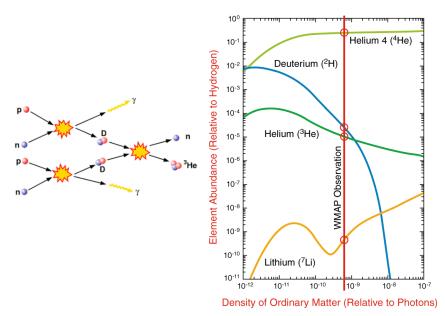

- $\sin^2(2\theta_{12}) = 0.846 \pm 0.021$
- $\Delta m^2_{21} = (7.53 \pm 0.18) \times 10^{-5} \text{eV}^2$
- $\sin^2(2\theta_{23}) = 0.999^{+0.001}_{-0.018}$ (normal mass hierarchy) $\sin^2(2\theta_{23}) = 1.000^{+0.000}_{-0.017}$ (inverted mass hierarchy)
- $\Delta m_{32}^2 = (2.44 \pm 0.06) \times 10^{-3} \text{eV}^2$ (normal mass hierarchy) $\Delta m_{32}^2 = (2.52 \pm 0.07) \times 10^{-3} \text{eV}^2$ (inverted mass hierarchy)
- $\sin^2(2\theta_{13}) = (9.3 \pm 0.8) \times 10^{-2}$
- Tiny masses (compared to quarks and charged leptons)
- Mixing angles \rightarrow large (compared to quark sector)

Dark Matter in The Universe

- Zwicky (\sim 1930) Galaxies in the Coma cluster seem to be moving too rapidly to be halo together by the gravitational attraction of the visible matter.
- Rotation curves of velocity versus radial distance for stars and gax provide indirect evidence for the existence of 'missing' non-luminous mass.
- $\delta \rho / \rho \sim 10^{-5} \Longrightarrow$ structure formation (galaxies, clusters) hard without non-baryonic dark matter.

Hot Big Bang Cosmology

Three remarkable predictions (Consequences):


- 1. Expanding Universe
- 2. Cosmic Microwave Background Radiation (CMB)
- 3. Nucleosynthesis

Edwin Hubble

 $H_0 = 67.8\pm0.9 \text{ (km/s)/Mpc}$ $t_0 = 1/H_0 = 13.813\pm0.038\text{Gyr}$ (Planck, arXiv:1502.01589) In natural units, $H_0 \approx 10^{-33} \text{ eV}!$

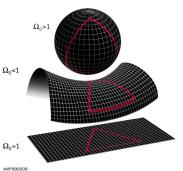
NASA/WMAP Science Team WWAP101087 Element Abundance graphs: Steigman, Encyclopedia of Astronomy and Astrophysics (Institute of Physics) December, 2000

・ロト ・回ト ・ヨト ・ヨト

• A homogeneous and isotropic universe is described by the Robertson-Walker metric

$$ds^{2} = -dt^{2} + a^{2}(t) \left[\frac{dr^{2}}{1 - kr^{2}} + r^{2}(d\theta^{2} + \sin^{2}\theta d\phi^{2}) \right],$$

where *r*, ϕ and θ are 'comoving' polar coordinates, which remain fixed for objects that follow the general cosmological expansion.


k is the scalar curvature of 3-space, with k = 0, +1, -1 describing a flat, closed and open universe respectively.

Geometry of the Universe

• Friedmann Equation

$$\Omega \equiv \frac{\rho}{\rho_c} = 1 + \frac{k}{(aH)^2}, \text{ where } \rho_c = \frac{3H^2}{8\pi G} = \text{critical density}$$

- Closed ($\Omega > 1$ or k = 1)
- Open ($\Omega < 1$ or k = -1)
- Flat ($\Omega = 1 \text{ or } k = 0$)

3

Image courtesy of NASA: http://map.gsfc.nasa.gov/universe/uni_shape.html \triangleleft \Box \triangleright \triangleleft \bigcirc \triangleright \triangleleft \equiv \flat \triangleleft \equiv \flat \triangleleft \equiv \flat

Solving Friedmann Equations:

 $(\dot{a})^2$

• For flat universe

•

Matter
$$\left(\rho_{m} = \frac{NM}{V}\right)$$

$$\rho_{m} \propto a^{-3} \Rightarrow a(t) \propto t^{2/3}$$

• Radiation $\left(\rho_{\gamma} = \frac{Nhc}{V\lambda}\right)$ $\rho_{\gamma} \propto a^{-4} \Rightarrow a(t) \propto t^{1/2}$

• Vacuum
$$(\rho_{\Lambda} = \text{const.})$$

$$\rho_{\Lambda} \propto a^{0} \Rightarrow a(t) \propto e^{Ht}$$

◆□ > ◆□ > ◆三 > ◆三 > 三 の へ @ >

Cosmological Problems

• Flatness Problem

Present energy density of the universe is determined to be equal to its critical value corresponding to a flat universe. This means that in the early universe

 $\Omega - 1 = \frac{k}{(aH)^2} \propto t$ (for a radiation dominated universe)

$$\Rightarrow |\Omega_{BBN} - 1| \le 10^{-16} \quad (|\Omega_{GUT} - 1| \le 10^{-55})$$

How does this come about?

Horizon Problem

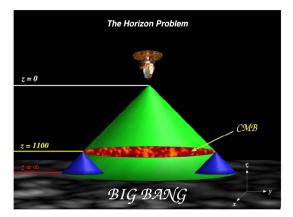


Image courtesy of W. Kinney

Why the CMB is so uniform on large scales?

• Origin of primordial density fluctuation which lead to Large Scale Structure and also explain

 $\delta T/T \sim 10^{\text{-5}}$

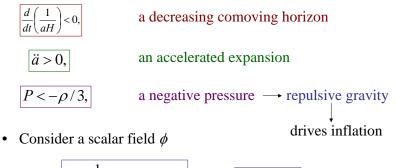
observed by COBE/WMAP and other experiments?

• Origin of baryon asymmetry $(n_b/n_\gamma \sim 10^{-10})$?

Inflationary Cosmology

[Guth, Linde, Albrecht & Steinhardt, Starobinsky, Mukhanov, Hawking, ...]

Successful Primordial Inflation should:


- Explain flatness, isotropy;
- Provide origin of $\frac{\delta T}{T}$;
- Offer testable predictions for n_s , r, $dn_s/d\ln k$;
- Recover Hot Big Bang Cosmology;
- Explain the observed baryon asymmetry;
- Offer plausible CDM candidate;

Physics Beyond the SM?

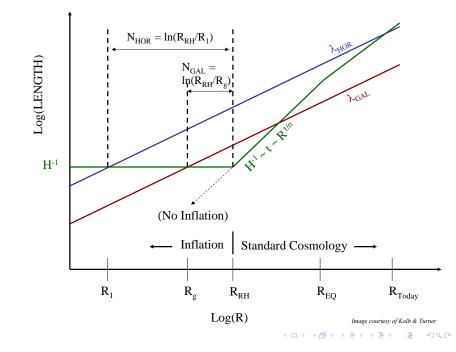
イロト (部) (日) (日) (日) (日)

Cosmic Inflation

• Inflation can be defined as:

$$\rho_{\phi} = \frac{1}{2}\dot{\phi}^2 + V(\phi) \approx V, \qquad a(t) \approx e^{Ht} \longrightarrow \text{ inflation}$$

Slow rolling scalar field acts as an inflaton


Cosmic Inflation

Tiny patch ~ 10^{-28} cm \implies > 1 cm after 60 e-foldings (time constant ~ 10^{-38} sec)

Inflation over \implies radiation dominated universe (hot big bang)

Quantum fluctuations of inflation field give rise to nearly scale invariant, adiabatic, Gaussian density perturbations

 \implies Seed for forming large scale structure

Solution to the Flatness Problem

$$\left(\Omega - 1 = \frac{k}{\left(aH\right)^2}\right)$$

$$\left|\Omega_{f}-1\right|=\left|\Omega_{i}-1\right|e^{-2N}\rightarrow0,$$

where $N = H \Delta t \ge 50$

Solution to the Horizon Problem

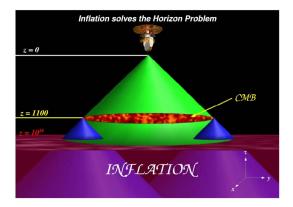


Image courtesy of W. Kinney

◆□ → ◆□ → ◆三 → ◆三 → ◆ ● ◆ ◆ ● ◆

Slow-roll Inflation

- Inflation is driven by some potential $V(\phi)$:
- Slow-roll parameters:

$$\epsilon = \frac{m_p^2}{2} \left(\frac{V'}{V}\right)^2, \ \eta = m_p^2 \left(\frac{V''}{V}\right).$$

• The spectral index n_{s} and the tensor to scalar ratio r are given by

$$n_s - 1 \equiv \frac{d \ln \Delta_R^2}{d \ln k}$$
, $r \equiv \frac{\Delta_h^2}{\Delta_R^2}$,

where Δ_h^2 and Δ_R^2 are the spectra of primordial gravity waves and curvature perturbation respectively.

• Assuming slow-roll approximation (i.e. $(\epsilon, |\eta|) \ll 1$), the spectral index n_s and the tensor to scalar ratio r are given by

$$n_s \simeq 1 - 6\epsilon + 2\eta, \ r \simeq 16\epsilon.$$

Slow-roll Inflation

• The tensor to scalar ratio r can be related to the energy scale of inflation via

$$V(\phi_0)^{1/4} = 3.3 \times 10^{16} r^{1/4} \text{ GeV}.$$

• The amplitude of the curvature perturbation is given by

$$\Delta_{\mathcal{R}}^2 = \frac{1}{24\pi^2} \left(\frac{V/m_p^4}{\epsilon} \right)_{\phi = \phi_0} = 2.43 \times 10^{-9} \text{ (WMAP7 normalization)}.$$

• The spectrum of the tensor perturbation is given by

$$\Delta_h^2 = \frac{2}{3\pi^2} \left(\frac{V}{m_P^4}\right)_{\phi=\phi_0}$$

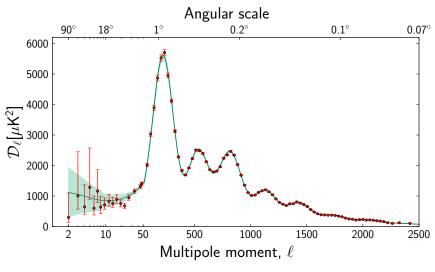
• The number of e-folds after the comoving scale $l_0=2\,\pi/k_0$ has crossed the horizon is given by

$$N_0 = \frac{1}{m_p^2} \int_{\phi_e}^{\phi_0} \left(\frac{V}{V'}\right) d\phi.$$

Inflation ends when $\max[\epsilon(\phi_e), |\eta(\phi_e)|] = 1$.

Scalar and Tensor Perturbations

During inflation, the universe contains a uniform scalar (inflaton) field and a uniform background metric.


There are quantum mechanical fluctuations about this zero-order scheme. According to inflationary cosmology, this generates $\delta \rho / \rho$ as well as gravity waves (from tensor fluctuations in the gravitational metric).

・ロト ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日

(1)
$$V = m^2 \phi^2$$

 $\implies \frac{\delta \rho}{\rho} \sim \frac{m}{M_{\rm P}} \implies m \sim 10^{13} \text{ GeV}$

(2)
$$V = \lambda \phi^4$$

 $\implies \frac{\delta \rho}{\rho} \propto \sqrt{\lambda} \implies \lambda \sim 10^{-12}$
(tiny quartic coupling)

Can Standard Model Higgs field drive inflation?

Planck (2013), arXiv:1303.5075

CMB to Parameters

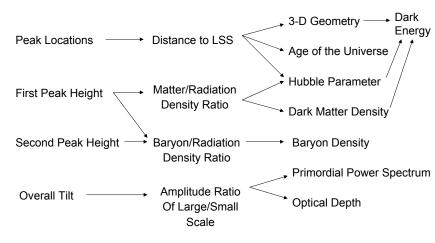
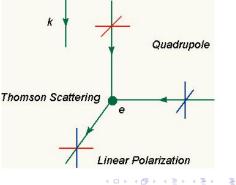


Image courtesy of E. Komatsu


Gravity Waves from Inflation

Inflation also generates tensor fluctuations in the gravitation metric which correspond to gravity waves. They induce fluctuations in the CMB and provide a unique signature of inflation. Their discovery would have far reaching implications for inflationary cosmology. The **PLANCK** satellite now in orbit has an excellent chance to 'detect' gravity waves if inflation is 'driven' by a grand unified theory with a characteristic energy scale $\sim 10^{16}$ GeV.

(note LHC cm energy ~ 10^4 GeV!)

CMB Polarization

- CMB radiation is expected to be polarized from Compton scattering during (matter-radiation) decoupling.
- To produce polarized radiation the incoming radiation must have a non-zero quadrupole. One expects the polarization signal to be small.

Polarization is generated by both scalar and tensor perturbations.

E modes (varies in strength in the same direction as its orientation)

B modes (varies in strength in a direction different from that in which it is pointing)

・ロット (四) (日) (日)

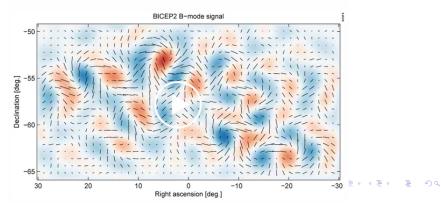
3

BICEP 2 Result

• BICEP 2 a few months ago surprised many people with their results that $r \sim 0.2$ (0.16).

• Some tension with the Planck upper bound r < 0.11.

• Somewhat earlier WMAP 9 stated that r < 0.13.

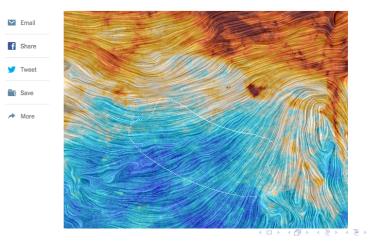

New York City, NY 🕓 17°

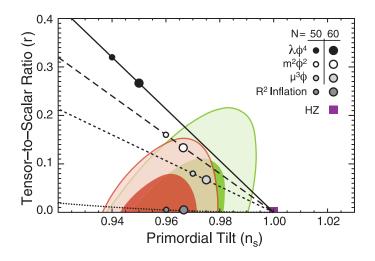
Big Bang breakthrough announced; gravitational waves detected

By Elizabeth Landau, CNN

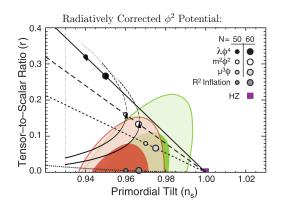
() Updated 10:37 AM ET, Tue March 18, 2014

ť

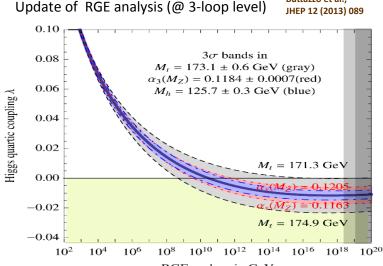

SCIENCE


66 COMMENTS

Speck of Interstellar Dust Obscures Glimpse of Big Bang


By DENNIS OVERBYE JAN. 30, 2015

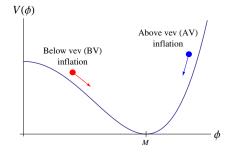
Q


WMAP nine year data

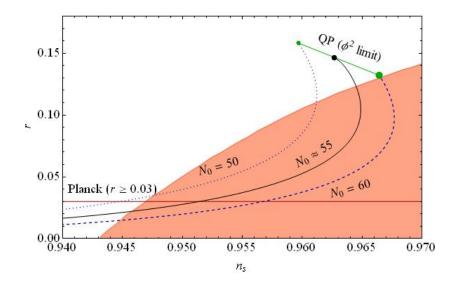
 n_s vs. r for radiatively corrected ϕ^2 potential. The dashed portions are for $\kappa < 0$. The one loop radiative correction is larger than the tree level potential in the portions displayed in gray. N is taken as 50 (left curves) and 60 (right curves).

Standard Model Higgs Inflation?

Buttazzo et al..

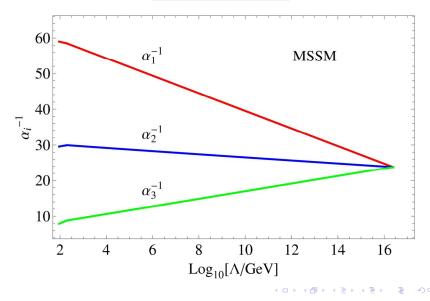


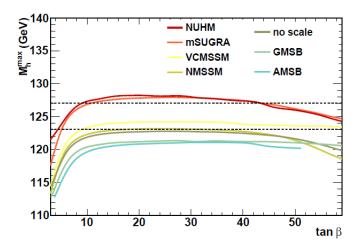
Tree Level Gauge Singlet Higgs Inflation


• Consider the following Higgs Potential:

$$V(\phi) = V_0 \left[1 - \left(\frac{\phi}{M}\right)^2\right]^2 \quad \longleftarrow \text{(tree level)}$$

Here ϕ is a gauge singlet field.




• WMAP/Planck data favors BV inflation

◆□ > ◆□ > ◆臣 > ◆臣 > ─ 臣 = • • • • ●

Supersymmetry

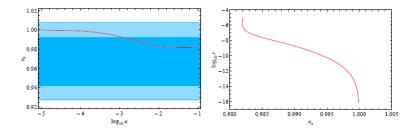
A. Arbey, M. Battaglia, A. Djouadi, F. Mahmoudi and J. Quevillon, Phys. Lett. B 708, 162 (2012)

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへで

Supersymmetric Higgs (Hybrid) Inflation

- Attractive scenario in which inflation can be associated with symmetry breaking $G \longrightarrow H$
- Tree Level Potential

$$V_F = \kappa^2 \left(M^2 - |\Phi^2| \right)^2 + 2\kappa^2 |S|^2 |\Phi|^2$$

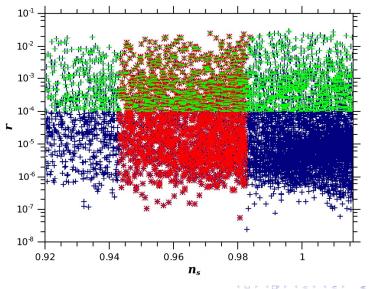

Ground State

$$|\langle \Phi \rangle| = M, \ \langle S \rangle = 0$$

Cf: Superconductor, $\langle \Phi \rangle \rightarrow$ cooper pair, $\langle S \rangle \rightarrow$ temperature

To realize inflation

 $S \gg M$ in early universe $(T \gg T_c)$ \Rightarrow At tree level, $V \approx \kappa^2 M^4 \Rightarrow$ exponential expansion



$$n_s \approx 1 - \frac{1}{N_0} \approx 0.98$$

 $\delta T/T \propto (M/M_P)^2 \sim 10^{-5} \longrightarrow$ attractive scenario ($M \sim M_G$)

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへの

More complete analysis:

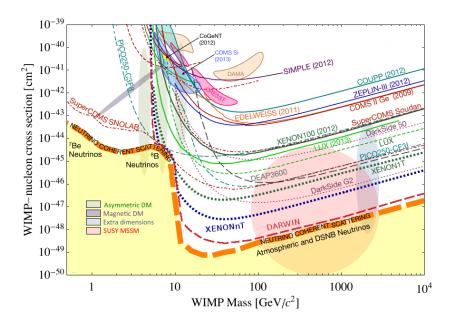
*) Q (~

Candidates includes:

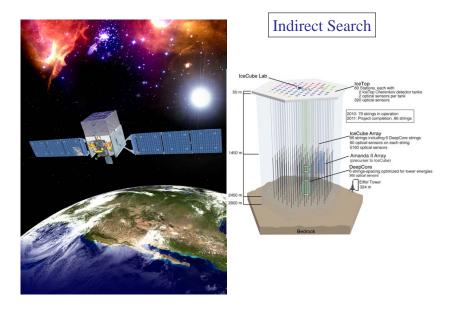
- WIMP (weakly interaction massive $(10^2 10^3 \text{ GeV})$ particle)
- Axions very light (~10⁻⁵ eV), very weakly interaction particle
- Wimpzilla very massive (10¹² GeV), perhaps not entirely stable, particle
- Gravitino keV mass partner of graviton; behaves as 'warm' dark matter?

・ロト ・ 同 ト ・ ヨ ト ・ ヨ ・ つへで

WIMP Candidates (10² - 10³ GeV in mass)


• Neutralino (neutral, spin ½, stable, light supersymmetric particle)

・ロン ・ 日 ・ ・ 日 ・ ・ 日 ・ ・ 日 ・


- Lightest neutral Kaluza Klein particle (E.g. KK excitation of some suitable known particle)
- Dark (mirror/hidden universe) baryons

SUSY DM CANDIDATES

	U(1)	SU(2)	Up-type	Down-type		
Spin	<i>M</i> ₁	<i>M</i> ₂	μ	μ	$m_{ ilde{ ext{v}}}$	<i>m</i> _{3/2}
2						G
						graviton
3/2		Noutr	olinoo, (.)	Ĝ
		Neutr	alinos: {χ⊧	$=\chi_1, \chi_2, \chi_3, \chi_3$	<i>4</i> }	gravitino
1	В	Wº				
1/2	Ĩ	Ŵ⁰	$ ilde{H}_u$	$ ilde{H_d}$	ν	
	Bino	Wino	Higgsino	Higgsino		
0			H _u	H _d	ĩ	
					sneutrino	

◆□ > ◆□ > ◆臣 > ◆臣 > 善臣 の < ⊙

The predictions of r (primordial gravity waves) for various inflation models:

1.Gauge Singlet Higgs Inflation:

 $\label{eq:relation} r \ge 0.02 \ \mbox{for} \ \ n_s \ge 0.96$ 2.SM Higgs Inflation: $r \sim 0.003, \ n_s \sim 0.968$ 3.Non-Minimal ϕ^4 Inflation: $r \ge 0.002 \ \ \mbox{for} \ \ n_s \ge 0.96$ 4.Dark Matter Inflation: $0.003 \le r \le 0.007$ 5.MSSM Inflation: $r \sim 10^{-16} \ \ \mbox{with} \ \ 0.93 \le n_s \le 1$ 6.Susy Higgs (Hybrid) Inflation: $r \le 10^{-4} \ \ \mbox{(minimal)}, \ r \le 0.03 \ \ \mbox{(non-minimal)}$

Planck (2015) says that r < 0.09

◆□ > ◆□ > ◆臣 > ◆臣 > 三臣 - のへぐ

Summary

< □ > < □ > < □ > < □ > < Ξ > < Ξ > = Ξ

Many Challenges:

- Dark Matter
- Supersymmetry
- Gravity Waves
- Neutrino Physics
- Proton Decay
- Dark Energy