Novel World of Hadron Physics

䯨
Universityof VIRGINIA

Stanford University

To understand the laws of physics and the fundamental composition of matter at the shortest possible distances.

electron $<10^{-16} \mathrm{~cm}$

Novel World of Hadron Physics

First Evidence for Nuclear Structure of Atoms

Rutherford Scattering

First Evidence for Quark Structure of Matter

Deep Inelastic Electron-Proton Scattering

Discovery of the Quark Structure of Matter

독

 NATIONAL ACCELERATOR LABORATOR1967

SLAC Two-Mile Linear Accelerator

Pief

1967 SLAC Experiment:

Scatter $20 \mathrm{GeV} / \mathrm{c}$ Electrons on protons
in a Hydrogen Target
Discovery of the Quark Structure of Matter
$e p \rightarrow e^{\prime} X$

Discovery of quarks!

Deep inelastic scattering: Experiments on the proton and the observation of scaling*

Friedman, Kendall, Taylor: Nobel Prize

- Rutherford scattering using very high-energy electrons striking protons

Discovery of quarks!

$$
e p \rightarrow e^{\prime} X
$$

$$
+6^{\circ}
$$

No intrinsic length scale!

Measure rate as a function of energy loss ν and momentum transfer Q Scaling at fixed $x_{B j o r k e n}=\frac{Q^{2}}{2 M_{p \nu}}=\frac{1}{\omega}$

Discovery of Bjorken Scaling Electron scatters on point-like quarks!

Quarks in the Proton

Feynman \& Bjorken:
"Parton" model

$$
\mathrm{p}=(\mathrm{u} u \mathrm{~d})
$$

Zweig: "Aces, Deuces, Treys"

Gell Mann:"Three Quarks for Mr. Mark"

Jefferson Lab

Thomas Jefferson National Accelerator Facility

Why are there three colors of quarks?
Greenberg Paulí Exclusion Princíple! spin-half quarks cannot be in same quantum state !

Three Colors (Parastatistics) Solves Paradow
3 Colors Combine: WHITE $\quad S U\left(N_{C}\right), N_{C}=3$
Upiversity oflirginia

Electron-PositronAnnihilation

SPEAR (electron-positron collider): discovery of the $\psi(c \bar{c}), D(c, \bar{d})$, and τ lepton

SLAC Evolution: SPEAR, PEP-II/BaBar, SLC/SLD, FACET, LCLS, LCLS II...

Electron-PositronAnnihilation

Ratio to muon pairs proportional to quark charge squared and the number of colors

$$
R_{e^{+} e^{-}}\left(E_{c m}\right)=N_{\text {colors }} \times \sum_{q} e_{q}^{2}
$$

Novel World of Hadron Physics

How to Count Quarks

Color-triplet quark representation

For $10 \mathrm{GeV}<E_{\mathrm{cm}}<40 \mathrm{GeV}$,

$$
J / \psi=(c \bar{c})_{1 S}
$$

$$
R_{e^{+}}\left(E_{c m}\right)=N_{\text {colors }} \times \sum_{q} e_{q}^{2}
$$

Primary Evidence for Quarks

- Electron-Proton Inelastic Scattering: $\quad e p \rightarrow e^{\prime} X$ Electron scatters on pointlike constituents with fractional charge; final-state jets
- Electron-Positron Annihilation: $e^{+} e^{-} \rightarrow X$ Production of pointlike pairs with fractional charges and 3 colors; quark, antiquark, gluon jets
- Exclusive hard scattering reactions: $\quad p p \rightarrow p p, \gamma p \rightarrow \pi^{+}{ }_{n, ~}$ ep $\rightarrow e p$ probability that hadron stays intact counts number of its pointlike constituents:

Quark Counting Rules
Quark interchange describes angular distribution

Fundamental Constituents underlying atoms, nuclei, and badrons

Higgs field gives particles their masses

Novel World of Hadron Physics
Usiversity of Virginia

QED Lagrangian

$$
\begin{aligned}
& \mathcal{L}_{Q E D}=-\frac{1}{4} \operatorname{Tr}\left(F^{\mu \nu} F_{\mu \nu}\right)+\sum_{\ell=1}^{n_{\ell}} i \bar{\Psi}_{\ell} D_{\mu} \gamma^{\mu} \Psi_{\ell}+\sum_{\ell=1}^{n_{\ell}} m_{\ell} \bar{\Psi}_{\ell} \Psi_{\ell} \\
& i D^{\mu}=i \partial^{\mu}-e A^{\mu} \quad F^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}
\end{aligned}
$$

Yang Mills Gauge Principle: Phase Invariance at Every Point of Space and Time

Scale-Invariant Coupling Renormalizable Nearly-Conformal Landau Pole

QCD Lagrangian

$$
i D^{\mu}=i \partial^{\mu}-g A^{\mu}
$$

$$
G^{\mu \nu}=\partial^{\mu} A^{\mu}-\partial^{\nu} A^{\mu}-g\left[A^{\mu}, A^{\nu}\right]
$$

Yang Mills Gauge Principle: Color Rotation and Phase Invariance at Every Point of Space and Time

Scale-Invariant Coupling Renormalizable Nearly-Conformal Asymptotic Freedom Color Confinement

QED: Underlies Atomic Physics, Molecular Physics, Chemistry, Electromagnetic Interactions ...

QCD: Underlies Hadron Physics, Nuclear Physics, Strong Interactions, Jets

Theoretical Tools

- Feynman diagrams and perturbation theory
- Bethe Salpeter Equation, Dyson-Schwinger Equations
- Lattice Gauge Theory,
- Discretized Light-Front Quantization

AdS/QCD !
Novel World of Hadron Physics
UnIVERSITY of VIRGINIA

Fundamental Couplings of QCD and QED

Verification of Asymptotic Freedom

$\frac{\sigma\left(e^{+} e^{-} \rightarrow \text { three jets }\right)}{\sigma\left(e^{+} e^{-} \rightarrow \text { two jets }\right)}$
proportional to $\alpha_{s}(Q)$

Ratio of rate for $e^{+} e^{-} \rightarrow q \bar{q} g$ to $e^{+} e^{-} \rightarrow q \bar{q} \quad$ at $Q=E_{C M}=E_{e^{-}}+E_{e^{+}}$ Novel World of Hadron Physics

In QED the β - function

 is positive$$
\beta=\frac{d \alpha_{Q E D}\left(Q^{2}\right)}{d \ln Q^{2}}>0
$$

logarithmic derivative
of the QED coupling is positive
Coupling becomes stronger at short distances $=$ high momentum transfer

UNIVERSITY
of VIRGINIA

Novel World of 7 tadron Physics

Landau Pole! Stan Brodsky

$$
C_{F}=\frac{N_{C}^{2}-1}{2 N_{C}}
$$

$\lim N_{C} \rightarrow 0$ at fixed $\alpha=C_{F} \alpha_{s}, n_{\ell}=n_{F} / C_{F}$

QCD \rightarrow Abelian Gauge Theory

Analytic Feature of SU(NC) Gauge Theory

$$
\mathbf{Q C D} \rightarrow \mathbf{Q E D}
$$

All analyses for Quantum Chromodynamics must be applicable to Quantum Electrodynamics

First Evidence for Quark Structure of Matter

Deep Inelastic Electron-Proton Scattering
But why do quarks not appear in the final state? Why are quarks confined within hadrons?

- What is the origin of quark confinement?
- What determines the QCD mass scale?
- Novel hadronic states: tetraquarks!
- Novel QCD phenomena
- Supersymmetry in hadron physics
- Light-Front Holography
- New Physics Opportunities at JLab

Novet World of Hadron Physics

Each element of flash photograph illuminated
along the light front at a fixed

$$
\tau=t+z / c
$$

Evolve in LF time

$$
P^{-}=i \frac{d}{d \tau}
$$

Eígenvalue

$$
P^{-}=\frac{\mathcal{M}^{2}+\vec{P}_{\perp}^{2}}{P^{+}}
$$

$H_{L F}^{Q C D}\left|\Psi_{h}\right\rangle=\mathcal{M}_{h}^{2}\left|\Psi_{h}\right\rangle$

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

Measurements of hadron LF wavefunction are at fixed LF time

Like a flash photograph

Fixed $\tau=t+z / c$

$$
x_{b j}=x=\frac{k^{+}}{P^{+}}
$$

Dúrac'sAmazing Idea:
The "Front Form"

Evolve in

 ordinary timeP.A.M Dirac, Rev. Mod. Phys. 21, 392 (1949) Evolve in
light-front time!

Front Form

P.A.M Dirac, Rev. Mod. Phys. 392 (1949)

Instant Form

Stan Brodsky

Light-Front Wavefunctions: rigorous representation of composite systems in quantum field theory

$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

$$
\text { Fixed } \tau=t+z / c
$$

Dirac: Front Form

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad \sum_{i}^{n} x_{i}=1
$$

Invariant under boosts! Independent of P^{μ}
Causal, Frame-independent, Simple Vacuum, Current Matrix Elements are overlap of LFWFS

Formation of RelativisticAnti-Hydrogen

Measured at CERN-LEAR and FermiLab

Munger, Schmidt, sjb

Coalescence of off-shell co-moving positron and antiproton
Wavefunction maximal at small impact separation and equal rapidity "Hadronization" at the Amplitude Level

Novel World of Hadron Physics

Light-Front Wavefunctions

Dirac's Front Form: Fixed $\tau=t+z / c$

Direct connection to QCD Lagrangian
Remarkable new insights from $A d S / C F T$, the duality between conformal field theory and Anti-de Sítter Space

Exact frame-independent formulation of nomperturbative QCD!

$$
\begin{aligned}
& L^{Q C D} \rightarrow H_{L F}^{Q C D} \\
& H_{L F}^{Q C D}=\sum_{i}\left[\frac{m^{2}+k_{\perp}^{2}}{x}\right]_{i}+H_{L F}^{i n t} \\
& H_{L F}^{i n t} \text { : Matrix in Fock Space } \\
& H_{L F}^{Q C D}\left|\Psi_{h}>=\mathcal{M}_{h}^{2}\right| \Psi_{h}> \\
& \left|p, J_{z}>=\sum \psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; x_{i}, \vec{k}_{\perp i}, \lambda_{i}> \\
& n=3 \\
& \text { Eigenvalues and Eigensolutions give Hadronic Spectrum } \\
& \text { (a) } \\
& \text { (b) } \\
& \text { (c) }
\end{aligned}
$$

LFWFs: Off-shell in \mathbf{P} - and invariant mass

LIGHT-FRONT SCHRODINGER EQUATION

$$
\begin{aligned}
& \left(M_{\pi}^{2}-\sum_{i} \frac{\vec{k}_{1}^{2}+m_{i}^{2}}{x_{i}}\right)\left[\begin{array}{c}
\psi_{q \bar{q} / \pi} \\
\psi_{q \bar{q} g / \pi} \\
\vdots
\end{array}\right]=\left[\begin{array}{ccc}
\langle q \bar{q}| V|q \bar{q}\rangle & \langle q \bar{q}| V|q \bar{q} q\rangle & \cdots \\
\langle q \bar{q}| V|q \bar{q}\rangle\rangle & \langle q \bar{q}| V|q \bar{q} g\rangle & \cdots \\
\vdots & \vdots & \ddots
\end{array}\right]\left[\begin{array}{c}
\psi_{q \bar{q} / \pi} \\
\psi_{q \bar{q} \rho / \pi} \\
\vdots
\end{array}\right]
\end{aligned}
$$

G.P. Lepage, sjb

Novel World of Hadron Physics

Light-Front QCD
Heisenberg Equation

$$
H_{L C}^{Q C D}\left|\Psi_{h}\right\rangle=\mathcal{M}_{h}^{2}\left|\Psi_{h}\right\rangle
$$

DLCQ: Solve $Q C D(1+1)$ for any quark mass and flavors
Hornboste1, Pauli, sjb

Minkowski space; frame-independent, no fermion doubling, no ghosts trivial vacuum
Eigenvalues and Eigensolutions give Hadron
Spectrum and Light-Front wavefunctions

DLCQ: Solve QCD $(1+1)$ for any quark mass and flavors

Extrapolated masses for $N=2,3$ and 4 meson and baryon.

a-c) First three states in $N=3$ meson spectrum for $m / g=1.6,2 \mathrm{~K}=24$. d) Eleventh

a-c) First three states in $N=3$ baryon spectrum, $2 \mathrm{~K}=21$. d) First $B=2$ state.

Hornbostel, Pauli, sjb

Light-Front Wavefunctions: rigorous representation of composite

 systems in quantum field theory$$
x=\frac{k^{+}}{P^{+}}=\frac{k^{0}+k^{3}}{P^{0}+P^{3}}
$$

$$
\text { Fixed } \tau=t+z / c
$$

Process Independent
Direct Link to QCD Lagrangian!

$$
\psi_{L F}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad \sum_{i}^{n} x_{i}=1
$$

Invariant under boosts! Independent of $\left.P^{\mu}\right|^{\sum_{i}^{n} \vec{k}_{\perp i}=\overrightarrow{0}_{\perp}}$

Quantum Mechanics: Uncertainty in p, x, spin
Relativistic Quantum Field Theory:
Uncertainty in particle number n

Positronium n=2

$$
e^{+} e^{-}
$$

Lamb Shift n=3

$$
e^{+} e^{-} \gamma
$$

Hyperfine splitting $n=3$

$$
e^{+} e^{-} \gamma
$$

Vacuum Polarization n=4
$e^{+} e^{-} e^{+} e^{-}$

Higher Fock States of the Proton

Fixed LF time: Off-Shell in invariant mass Quantum Field Theory: Higher Fock States

$$
\left|p, S_{z}>=\sum_{n=3} \Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)\right| n ; \vec{k}_{\perp_{i}}, \lambda_{i}>
$$

sum over states with $n=3,4, \ldots$ constituents
The Light Front Fork State Wavefunctions

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

are boost invariant; they are independent of the hadron's energy and momentum P^{μ}.

The light-cone momentum fraction

$$
x_{i}=\frac{k_{i}^{+}}{p^{+}}=\frac{k_{i}^{0}+k_{i}^{z}}{P^{0}+P^{z}}
$$

are boost invariant.

$$
\sum_{i}^{n} k_{i}^{+}=P^{+}, \sum_{i}^{n} x_{i}=1, \sum_{i}^{n} \vec{k}_{i}^{\perp}=\overrightarrow{0}^{\perp}
$$

Intrinsic heavy quarks $c(x), b(x)$ at high x !

$$
\begin{aligned}
& \hline \bar{s}(x) \neq s(x) \\
& \bar{u}(x) \neq \bar{d}(x) \\
& \hline
\end{aligned}
$$

Hidden Color in QCD Lepage, Ji, sjb

- Deuteron six quark wavefunction:
- 5 color-singlet combinations of 6 color-triplets -one state is $\ln \mathrm{p}>$
- Components evolve towards equality at short distances
- Hidden color states dominate deuteron form factor and photodisintegration at high momentum transfer
- Predict $\frac{d \sigma}{d t}\left(\gamma d \rightarrow \Delta^{++} \Delta^{-}\right) \simeq \frac{d \sigma}{d t}(\gamma d \rightarrow p n)$ at high Q^{2}

Angular Momentum on the Light-Front

$$
J^{z}=\sum_{i=1}^{n} s_{i}^{z}+\sum_{j=1}^{n-1} l_{j}^{z}
$$

Conserved
LF Fock state by Fock State!

LF Spin Sum Rule

$$
l_{j}^{z}=-\mathrm{i}\left(k_{j}^{1} \frac{\partial}{\partial k_{j}^{2}}-k_{j}^{2} \frac{\partial}{\partial k_{j}^{1}}\right)
$$

n -I orbital angular momenta

Orbital angular momentum is a property of Light-Front Wavefunctions
Nonzero Anomalous Moment $->$ Nonzero orbital angular momentum

Fixed bF time
Proton Self Energy
Intrinsic Heavy
Quarks

Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}} \quad \dot{\vee}$ Probability $(\mathrm{QCD}) \propto \frac{1}{M_{Q}^{2}}$
Collins, Ellis, Gunion, Mueller, sib Polyakov, et al.

Fixed LF time

$$
x_{Q} \propto\left(m_{Q}^{2}+k_{\perp}^{2}\right)^{1 / 2}
$$

QCD predicts Intrinsic Heavy Quarks at high $x!$

Minimal offshellness

Probability $(\mathrm{QED}) \propto \frac{1}{M_{\ell}^{4}} \quad$ Probability $(\mathrm{QCD}) \propto \frac{1}{M_{Q}^{2}}$
Collins, Ellis, Gunion, Mueller, sjb Polyakov, et al.

Two Components (separate evolution):
$c\left(x, Q^{2}\right)=c\left(x, Q^{2}\right)_{\text {extrinsic }}+c\left(x, Q^{2}\right)_{\text {intrinsic }}$

Properties of Non-Perturbative
5 and 7-Quark Fock-State

- Dominant configuration: same rapidity
- Heavy quarks have most momentum
- Correlated with proton quantum numbers
- Duality with meson-baryon channels
- strangeness asymmetry at $\boldsymbol{x}>0 . I$
- Maximally energy efficient

Intrinsic Heavy Quarks at high x

Leading Hadron Production from "Intrinsic Charm"

Coalescence of Comoving Charm and Valence Quarks Produce $J / \psi, \Lambda_{c}$ and other Charm Hadrons at High x_{F}

UNIVERSITY
Stan Brodsky

THE $\Lambda_{\mathrm{b}}{ }^{0}$ BEAUTY BARYON PRODUCTION IN PROTON-PROTON INTERACTIONS AT $V_{s}=62 \mathrm{GeV}$: A SECOND OBSERVATION

G. Bari, M. Basile, G. Bruni, G. Cara Romeo, R. Casaccia, L. Cifarelli, F. Cindolo, A. Contin, G. D'Alì, C. Del Papa, S. De Pasquale, P. Giusti, G. Iacobucci, G. Maccarrone, T. Massam, R. Nania, F. Palmonari, G. Sartorelli, G. Susinno, L. Votano and A. Zichichi
CERN, Geneva, Switzerland
Dipartimento di Fisica dell'Università, Bologna, Italy
Dipartimento di Fisica dell'Università, Cosenza, Italy Istituto di Fisica dell'Università, Palermo, Italy Istituto Nazionale di Fisica Nucleare, Bologna, Italy Istituto Nazionale di Fisica Nucleare, LNF, Frascati, Italy

Abstract

Another decay mode of the $\Lambda_{\mathrm{b}}{ }^{0}$ (open-beauty baryon) state has been observed: $\Lambda_{\mathrm{b}}{ }^{0} \rightarrow \Lambda_{\mathrm{c}}{ }^{+} \pi^{+} \pi^{-} \pi^{-}$. In addition, new results on the previously observed decay channel, $\Lambda_{\mathrm{b}}{ }^{\circ} \rightarrow \mathrm{pD}^{\circ} \pi^{-}$, are reported. These results confirm our previous findings on $\Lambda_{\mathrm{b}}{ }^{0}$ production at the ISR. The mass value ($5.6 \mathrm{GeV} / \mathrm{c}^{2}$) is found to be in good agreement with theoretical predictions. The production mechanism is found to be "leading".

Evidence for Intrinsic Bottom!

CERN-ISR R422 (Split Field Magnet), 1988/1991

$\Lambda_{b}^{0} \rightarrow \Lambda_{c}^{+} \pi^{+} \pi^{-} \pi^{-}$
II Nuovo Cimento 104, 1787
Evidence for Intrinsic Bottom!

Production of Two Charmonia at High x_{F}

Fig. 3. The $\psi \psi$ pair distributions are shown in (a) and (c) for the pion and proton projectiles. Similarly, the distributions of J / ψ 's from the pairs are shown in (b) and (d). Our calculations are compared with the $\pi^{-} N$ data at 150 and $280 \mathrm{GeV} / c$ [1]. The $x_{\phi \psi \psi}$ distributions are normalized to the number of pairs from both pion beams (a) and the number of pairs from the 400 GeV proton measurement (c). The number of single J / ψ 's is twice the number of pairs.

NA3 Data

Excludes PYTHIA 'color drag' model

$$
\begin{gathered}
\pi A \rightarrow J / \psi J / \psi X \\
\text { R. Vogt, sjb }
\end{gathered}
$$

The probability distribution for a general n-particle intrinsic $c \bar{c}$ Fock state as a function of x and k_{T} is written as

$$
\begin{aligned}
& \frac{d P_{\mathrm{ic}}}{\prod_{i=1}^{n} d x_{i} d^{2} k_{T, i}} \\
& \quad=N_{n} \alpha_{s}^{4}\left(M_{c \bar{c}}\right) \frac{\delta\left(\sum_{i=1}^{n} k_{T, i}\right) \delta\left(1-\sum_{i=1}^{n} x_{i}\right)}{\left(m_{h}^{2}-\sum_{i=1}^{n}\left(m_{T, i}^{2} / x_{i}\right)\right)^{2}}
\end{aligned}
$$

Production of a Double-Charm Baryon

SELEX high $\mathbf{x}_{\mathbf{F}} \quad<x_{F}>=0.33$

Intrinsic Charm Mechanism for Inclusive High-X Higgs Production

Also: intrinsic strangeness, bottom, top
Higgs can have $>\mathbf{8 0 \%}$ of Proton Momentum!
New production mechanism for Higgs! AFTER: Higgs production at threshold!

Intrinsic Heavy Quark Contribution to Inclusive Higgs Production

Engelfried \& SJB:
Detect 4 muon and 2 muon final states at LHC downstream

Drell \&Yan, West Drell, sjb Exact LF formula Sum over Fock states UATVERSTTY ofVIRGINIA
$\begin{aligned} \text { struck } & \vec{k}_{\perp i}^{\prime} & =\vec{k}_{\perp i}+\left(1-x_{i}\right. \\ \text { ctators } & \vec{k}_{\perp i}^{\prime} & =\vec{k}_{\perp i}-x_{i} \vec{q}_{\perp}\end{aligned}$
Novel World of Hadron Physics
Stan Brodsky
Stinc

$$
\begin{aligned}
& \frac{F_{2}\left(q^{2}\right)}{2 M}=\sum_{a} \int[\mathrm{~d} x]\left[\mathrm{d}^{2} \mathbf{k}_{\perp}\right] \sum_{j} e_{j} \frac{1}{2} \times \\
& {\left[-\frac{1}{q^{L}} \psi_{a}^{\dagger *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\downarrow}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)+\frac{1}{q^{R}} \psi_{a}^{\downarrow *}\left(x_{i}, \mathbf{k}_{\perp i}^{\prime}, \lambda_{i}\right) \psi_{a}^{\dagger}\left(x_{i}, \mathbf{k}_{\perp i}, \lambda_{i}\right)\right]} \\
& \mathbf{k}_{\perp i}^{\prime}=\mathbf{k}_{\perp i}-x_{i} \mathbf{q}_{\perp} \quad \mathbf{k}_{\perp j}^{\prime}=\mathbf{k}_{\perp j}+\left(1-x_{j}\right) \mathbf{q}_{\perp}
\end{aligned}
$$

Must have $\Delta \ell_{z}= \pm 1$ to have nonzero $F_{2}\left(q^{2}\right)$
Nonzero Proton Anomalous Moment -->
Nonzero orbital quark angular momentum
Novel World of Hadron Physics

Calculation of proton form factor in Instant Form

$$
<p+q\left|J^{\mu}(0)\right| p>
$$

- Need to boost proton wavefunction: p to p+q. Extremely complicated dynamical problem; particle number changes
- Need to couple to all currents arising from vacuum!! Remain even after normal-ordering
- Instant-form WFs insufficient to calculate form factors
- Each time-ordered contribution is frame-dependent
- Divide by disconnected vacuum diagrams

Advantages of the Front Form

- Light-Front Time-Ordered Perturbation Theory: Elegant, Physical
- Frame-Independent, Causal
- Few LF Time-Ordered Diagrams (not n!) -- all k+ must be positive
- \mathbf{J}^{z} conserved at each vertex
- Cluster Decomposition -- only proof for relativistic theory
- Automatically normal-ordered; LF Vacuum trivial up to zero modes
- Renormalization: Alternate Denominator Subtractions: Tested to three loops in QED
- Reproduces Parke-Taylor Rules and Amplitudes (Stasto-Cruz)
- Hadronization at the Amplitude Level with Confinement

Novel World of Hadron Physics

- LF wavefunctions play the role of Schrödinger wavefunctions in Atomic Physics
- LFWFs=Hadron Eigensolutions: Direct Connection to QCD Lagrangian

$\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)$
- Relativistic, frame-independent: no boosts, no disc contraction, Melosh built into LF spinors
- Hadronic observables computed from LFWFs: Form factors, Structure Functions, Distribution Amplitudes, GPDs, TMDs, Weak Decays, modulo `lensing' from ISIs, FSIs
- Cannot compute current matrix elements using instant or point form from eigensolutions alone -- need to include vacuum currents!
- Hadron Physics without LFWFs is like Biology without DNA!

Novel World of Hadron Physics

- Hadron Physics without LFWFs is like Biology without DNA!

QCD and the LF Hadron Wavefunctions

AdS/QCD Light-Front Holography LF Schrodinger Eqn

Initial and Final State Rescattering DDIS, DDIS, T-Odd

Non-Universal Antishadowing

Quark \& Flavor Structure

DVCS, GPDs. TMDs
LF Overlap, incl ERBL

Final State Interactions not suppressed!

- Leading-Twist Bjorken Scaling!
$\mathbf{i} \vec{S} \cdot \vec{p}_{j e t} \times \vec{q}$
- Requires nonzero orbital angular momentum of quark
- Arises from the interference of Final-State QCD Coulomb phases in S^{-}and P - waves;
- Wilson line effect -- gauge independent
- Relate to the quark contribution to the target proton anomalous magnetic moment and final-state QCD phases
- QCD phase at soft scale!

- New window to QCD coupling and running gluon mass in the IR
- QED S and P Coulomb phases infinite -- difference of phases finite!

Novel World of Hadron Physics

DY $\cos 2 \phi$ correlation at leading twist from double ISI
$\begin{aligned} & \text { Product of Boer ~ } \\ & \text { MuldersFunctions }\end{aligned} \quad h_{1}^{\perp}\left(x_{1}, \boldsymbol{p}_{\perp}^{2}\right) \times \bar{h}_{1}^{\perp}\left(x_{2}, \boldsymbol{k}_{\perp}^{2}\right)$
Initial-State Interactions not suppressed!

Double Initial-State Interactions

generate anomalous $\cos 2 \phi$ Drell-Yan planar correlations
 Boer, Hwang, sjb

$$
\begin{aligned}
& \frac{1}{\sigma} \frac{d \sigma}{d \Omega} \propto\left(1+\lambda \cos ^{2} \theta+\mu \sin 2 \theta \cos \phi+\frac{\nu}{2} \sin ^{2} \theta \cos 2 \phi\right) \\
& \text { PQCD Factorization (Lam Tung): } \\
& 1-\lambda-2 \nu=0
\end{aligned}
$$

Violates Lam-Tung relation!

$$
\pi N \rightarrow \mu^{+} \mu^{-} X \text { NA10 }
$$

Model: Boer,

Single-spin

 asymmetries in exclusive channels e-Exclusive
Sivers Effect connects to Inclusive Effect
$i \vec{S}_{p} \cdot \vec{q} \times \vec{p}_{K}$
Psendo-T-Odd quark

Anomalous effect from Double ISI in Massive Lepton Production

- Leading Twist, valence quark dominated
- Violates Lam-Tung Relation!
- Not obtained from standard PQCD subprocess analysis
- Normalized to the square of the single spin asymmetry in semi-inclusive DIS
- No polarization required
- Challenge to standard picture of PQCD Factorization

Problem for factorization when both ISI and FSI occur!

Dynamic

- Square of Target LFWFs
- NoWilson Line
- Probability Distributions
- Process-Independent
- T-even Observables
- No Shadowing, Anti-Shadowing
- Sum Rules: Momentum and J
- DGLAP Evolution; mod. at large x
- No Diffractive DIS

Modified by Rescattering: ISI \& FSI
Contains Wilson Line, Phases
No Probabilistic Interpretation
Process-Dependent - From Collision
T-Odd (Sivers, Boer-Mulders, etc.)
Shadowing, Anti-Shadowing, Saturation
Sum Rules Not Proven
DGLAP Evolution
Hard Pomeron and Odderon Diffractive DIS

$$
Q^{2}=5 \mathrm{GeV}^{2}
$$

Scheinbein, Yu, Keppel, Morfin, Olness, Owens
Novel World of Hadron Physics

Origin of Regge Behavior of Inelastic Structure Functions

$$
F_{2 p}(x)-F_{2 n}(x) \propto x^{1 / 2}
$$

Antiquark interacts with target nucleus at energy $\widehat{s} \propto \frac{1}{x_{b j}}$

Regge contribution: $\sigma_{\bar{q} N} \sim \widehat{s}^{\alpha_{R}-1}$

Nonsinglet Kuti-Weisskoff $F_{2 p}-F_{2 n} \propto \sqrt{x}_{b j}$
 at small $x_{b j}$.

Landshoff,
Shadowing of $\sigma_{\bar{q} M}$ produces shadowing of Polkinghorne, Short nuclear structure function.

Close, Gunion, sjb
Schmidt, Yang, Lu, sjb

$\begin{array}{ccc}\begin{array}{c}\text { Non-singlet } \\ \text { Reggeon }\end{array} & 10^{-2} & 10^{-1}\end{array} \quad$ Kuti-Weisskopf behavior
Exchange

Reggeon
 Exchange

Phase of two-step amplitude relative to one step:
$\frac{1}{\sqrt{2}}(1-i) \times i=\frac{1}{\sqrt{2}}(i+1)$
Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Different for couplings of $\gamma^{*}, Z^{0}, W^{ \pm}$
Criticaltest: Tagged Drell-Yan

Schmidt, Yang; sjb

Nuclear Antishadowing not universal!

Test at JLab — Flavor tagged Structure Functions

$H_{Q E D}$

$\left(H_{0}+H_{\text {int }}\right)|\Psi>=E| \Psi>$
$\left[-\frac{\Delta^{2}}{2 m_{\mathrm{red}}}+V_{\mathrm{eff}}(\vec{S}, \vec{r})\right] \psi(\vec{r})=E \psi(\vec{r})$
Effective two-particle equation
Coupled Fock states
$\left[-\frac{1}{2 m_{\mathrm{red}}} \frac{d^{2}}{d r^{2}}+\frac{1}{2 m_{\mathrm{red}}} \frac{\ell(\ell+1)}{r^{2}}+V_{\mathrm{eff}}(r, S, \ell)\right] \psi(r)=E \psi(r)$

$$
\nabla_{e f f} \rightarrow T \Gamma(r)=-\frac{a}{\gamma}
$$

Semiclassical first approximation to QED

Includes Lamb Shift, quantum corrections

QED atoms: positronium

 and muoniumSphericalBasis $\quad r, \theta, \phi$ Coulomb potential

Bohr Spectrum

Schrödinger Eq.

Bohr Atom

Electron transitions for the Hydrogen atom

Lyman series
$E(n)$ to $E(n=1)$

Need a First Approximation to QCD

Comparable in simplicity to
 Schrödinger Theory in Atomic Physics

Relativistic, Frame-Independent, Color-Confining

Goal: an analytic first approximation to QCD

- As Simple as Schrödinger Theory in Atomic Physics
- Relativistic, Frame-Independent, Color-Confining
- Confinement in QCD -- What sets the QCD mass scale?
- QCD Coupling at all scales
- Hadron Spectroscopy

- Light-Front Wavefunctions
- Form Factors, Structure Functions,Hadronic Observables
- Constituent Counting Rules
- Hadronization at the Amplitude Level
- Insights into QCD Condensates

Novel World of Hadron Physics

$H_{Q C D}^{L F}$

QCD Meson Spectrum

$\left(H_{L F}^{0}+H_{L F}^{I}\right)\left|\Psi>=M^{2}\right| \Psi>$
$\left[\frac{\vec{k}_{\perp}^{2}+m^{2}}{x(1-x)}+V_{\mathrm{eff}}^{L F}\right] \psi_{L F^{\prime}}\left(x, \vec{k}_{\perp}\right)=M^{2} \psi_{L F}\left(x, \vec{k}_{\perp}\right)$

Coupled Fork states

Effective two-particle equation

$$
\zeta^{2}=x(1-x) b_{\perp}^{2}
$$

Azimuthal Basis ζ, ϕ

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Semiclassical first approximation to QCD
Confining AdS/QCD potential

Light-Front Schrödinger Equation

G. de Teramond, sjb

Relativistic LF single-variable radial equation for $Q C D \& Q E D$

Frame Independent!
$\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{m^{2}}{x(1-x)}+\frac{-1+4 L^{2}}{\zeta^{2}}+U(\zeta, S, L)\right] \psi_{L F}(\zeta)=M^{2} \psi_{L F}(\zeta)$
$\zeta^{2}=x(1-x) \mathbf{b}_{\perp}^{2}$.

AdS/QCD:

$$
U(\zeta, S, L)=\kappa^{2} \zeta^{2}+\kappa^{2}(L+S-1 / 2)
$$

U is the exact $Q C D$ potential Conjecture: 'H'-diagrams generate \mathbf{U} ?

Bound States in Relativistic Quantum Field Theory:

Light-Front Wavefunctions Dirac's Front Form: Fixed $\tau=t+z / c$

Fixed $\tau=t+z / c$

$$
\psi\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right) \quad x_{i}=\frac{k_{i}^{+}}{P^{+}}
$$

Invariant under boosts. Independent of P^{μ}

$$
\mathrm{H}_{L F}^{Q C D}\left|\psi>=M^{2}\right| \psi>
$$

Direct connection to QCD Lagrangian
Remarkable new insights from AdS/CFT, the duality between conformal field theory and Anti-de Sitter Space

Light-Front Holography and Now-Perturbative QCD

Goal:

Use AdS/QCD duality to construct a first approximation to QCD

Hadron Spectrum
Light-Front Wavefunctions, Form Factors, DVCS, etc

$$
\Psi_{n}\left(x_{i}, \vec{k}_{\perp i}, \lambda_{i}\right)
$$

in collaboration with Guy de Teramond

Applications of AdS/CFT to QCD

Changes in physical length scale mapped to evolution in the 5th dimension z

in collaboration with Guy de Teramond

5-Dimensional

5-Dimensional

\sum| Anti-de Sitter |
| :---: |
| Spacetime |

4-Dimensional Flat Spacetime (hologram)

Changes in physical length scale mapped to evolution in the 5th dimension z

$8-2007$ $8685 A 14$

- Truncated AdS/CFT (Hard-Wall) model: cut-off at $z_{0}=1 / \Lambda_{\mathrm{QCD}}$ breaks conformal invariance and allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).
- Smooth cutoff: introduction of a background dilaton field $\varphi(z)$ - usual linear Regge dependence can be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

Novel World of Hadron Physics

AdS/CFT

- Isomorphism of $S O(4,2)$ of conformal QCD with the group of isometries of AdS space

$$
d s^{2}=\frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right), \quad \text { invariant measure }
$$

$x^{\mu} \rightarrow \lambda x^{\mu}, z \rightarrow \lambda z$, maps scale transformations into the holographic coordinate z.

- AdS mode in z is the extension of the hadron wf into the fifth dimension.
- Different values of z correspond to different scales at which the hadron is examined.

$$
x^{2} \rightarrow \lambda^{2} x^{2}, \quad z \rightarrow \lambda z
$$

$x^{2}=x_{\mu} x^{\mu}$: invariant separation between quarks

- The AdS boundary at $z \rightarrow 0$ correspond to the $Q \rightarrow \infty$, UV zero separation limit.

Dúlaton-Modified AdS/QCD

$$
d s^{2}=e^{\varphi(z)} \frac{R^{2}}{z^{2}}\left(\eta_{\mu \nu} x^{\mu} x^{\nu}-d z^{2}\right)
$$

- Soft-wall dilaton profile breaks conformal invariance $\quad e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}$
- Color Confinement
- Introduces confinement scale κ
- Uses AdS $_{5}$ as template for conformal theory

Novel World of Hadron Physics
Stan Brodsky
S늘를

Introduce "Dilaton" to simulate confinement analytically \downarrow

- Nonconformal metric dual to a confining gauge theory

$$
d s^{2}=\frac{R^{2}}{z^{2}} e^{\varphi(z)}\left(\eta_{\mu \nu} d x^{\mu} d x^{\nu}-d z^{2}\right)
$$

where $\varphi(z) \rightarrow 0$ at small z for geometries which are asymptotically AdS $_{5}$

- Gravitational potential energy for object of mass m

$$
V=m c^{2} \sqrt{g_{00}}=m c^{2} R \frac{e^{\varphi(z) / 2}}{z}
$$

- Consider warp factor $\exp \left(\pm \kappa^{2} z^{2}\right)$
- Plus solution: $V(z)$ increases exponentially confining any object in modified AdS metrics to distances $\langle z\rangle \sim 1 / \kappa$

Klebanov and Maldacena

$$
e^{\varphi(z)}=e^{+\kappa^{2} z}
$$

$$
\begin{gathered}
L F(3+1) \\
\psi\left(x, \vec{b}_{\perp}\right) \\
\zeta=\sqrt{x(1-x) \vec{b}_{\perp}^{2}} \\
\psi\left(x, \vec{b}_{\perp}\right) \longrightarrow \\
\psi\left(x, \vec{b}_{\perp}\right)=\sqrt{\frac{x(1-x)}{2 \pi \zeta}} \phi(\zeta)_{x}(1-x)
\end{gathered}
$$

Light-Front Holography: Unique mapping derived from equality of LF and AdS formula for current matrix elements

Light-Front Holography: Map AdS/CFT to 3+1 LF Theory

Relativistic LF radial equation!
Frame Independent

$$
\begin{aligned}
& {\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \phi(\zeta)=\mathcal{M}^{2} \phi(\zeta)} \\
& \zeta^{2}=x(1-x) \mathrm{b}_{\perp}^{2} \\
& U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1) \\
& \text { G. de Teramond, sib }
\end{aligned}
$$

confining potential:

de Teramond, Dosch, sjb

General-Spin Hadrons

- Obtain spin- J mode $\Phi_{\mu_{1} \cdots \mu_{J}}$ with all indices along 3+1 coordinates from Φ by shifting dimensions

$$
\Phi_{J}(z)=\left(\frac{z}{R}\right)^{-J} \Phi(z) \quad e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

- Substituting in the AdS scalar wave equation for Φ

$$
\left[z^{2} \partial_{z}^{2}-\left(3-2 J-2 \kappa^{2} z^{2}\right) z \partial_{z}+z^{2} \mathcal{M}^{2}-(\mu R)^{2}\right] \Phi_{J}=0
$$

- Upon substitution $z \rightarrow \zeta$

$$
\phi_{J}(\zeta) \sim \zeta^{-3 / 2+J} e^{\kappa^{2} \zeta^{2} / 2} \Phi_{J}(\zeta)
$$

we find the LF wave equation

$$
\left(-\frac{d^{2}}{d \zeta^{2}}-\frac{1-4 L^{2}}{4 \zeta^{2}}+\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)\right) \phi_{\mu_{1} \cdots \mu_{J}}=\mathcal{M}^{2} \phi_{\mu_{1} \cdots \mu_{J}}
$$

with $(\mu R)^{2}=-(2-J)^{2}+L^{2}$

$$
A d S / Q C D
$$

Soft-Wall Model

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Unique

Confinement Potential!
Preserves Conformal Symmetry of the action

Confinement scale:

$$
\kappa \simeq 0.6 \mathrm{GeV}
$$

$$
1 / \kappa \simeq 1 / 3 \mathrm{fm}
$$

de Alfaro, Fubini, Furlan:
Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Goal:

- Use AdS/CFT to provide an approximate, covariant, and analytic model of hadron structure with confinement at large distances, conformal behavior at short distances
- Analogous to Schrödinger Theory for Atomic Physics
- AdS/QCD Light-Front Holography
- Hadronic Spectra and Light-Front Wavefunctions

Light-Front Schrödinger Equation

Light-Front Schrödinger Equation

G. de Teramond, sjb

Relativistic LF single-variable radial equation for QCD \& QED

Frame Independent!
$\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{m^{2}}{x(1-x)}+\frac{-1+4 L^{2}}{\zeta^{2}}+U(\zeta, S, L)\right] \psi_{L F}(\zeta)=M^{2} \psi_{L F}(\zeta)$

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Fig: Orbital and radial AdS modes in the soft wall model for $\kappa=0.6 \mathrm{GeV}$. Same slope in n and L !

Soft Wall

 Model

Light meson orbital (a) and radial (b) spectrum for $\kappa=0.6 \mathrm{GeV}$.

$$
M^{2}(n, L, J)=4 \kappa^{2}(n+L / 2+J / 2)
$$

Bosonic Modes and Meson Spectrum

$$
2 \kappa^{2} \text { for } \Delta S=1
$$

Regge trajectories for the $\pi(\kappa=0.6 \mathrm{GeV})$ and the $I=1 \rho$-meson and $I=0 \omega$-meson families ($\kappa=0.54 \mathrm{GeV}$)

Balmer series of $Q C D$

Kaon Spectrum
de Tèramond, Dosch, sjb

$$
\mathcal{M}^{2}=4 \kappa^{2}\left(n+\frac{J+L}{2}\right)
$$

$$
\begin{gathered}
\delta M^{2}=\sum_{i}\left\langle\frac{m_{i}^{2}}{x_{i}}\right\rangle \quad \text { Weisb } \\
m_{q}=46 \mathrm{MeV}, m_{s}=357 \mathrm{MeV}
\end{gathered}
$$

Orbital and Radial Excitations

De Teramond, Dosch, sil
$m_{u}=m_{d}=46 \mathrm{MeV}, \quad m_{s}=357 \mathrm{MeV}$

$$
M^{2}=M_{0}^{2}+\langle X| \frac{m_{q}^{2}}{x}|X\rangle+\langle X| \frac{m_{\bar{q}}^{2}}{1-x}|X\rangle
$$

Prediction from AdS/QCD: Meson LFWF

Provides Connection of Confinement to Hadron Structure

Hadron Distribution Amplitudes

$$
\phi_{M}(x, Q)=\int^{Q} d^{2} \vec{k} \psi_{q \bar{q}}\left(x, \vec{k}_{\perp}\right)
$$

- Fundamental gauge invariant non-perturbative input to hard exclusive processes, heavy hadron decays. Defined for Mesons, Baryons

> Lepage, sjb

- Evolution Equations from PQCD, OPE

> Efremov, Radyushkin

Sachrajda, Frishman Lepage, sjb

- Conformal Expansions Braun, Gardi
- Compute from valence light-front wavefunction in light-cone gauge

Remarkable Features of Light-Front Schrödinger Equation

- Relativistic, frame-independent
- QCD scale appears - unique LF potential
- Reproduces spectroscopy and dynamics of light-quark hadrons with one parameter
- Zero-mass pion for zero mass quarks!
- Regge slope same for n and L-- not usual HO
- Splitting in L persists to high mass -- contradicts conventional wisdom based on breakdown of chiral symmetry
- Phenomenology: LFWFs, Form factors, electroproduction
- Extension to heavy quarks

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Prediction from AdS/QCD: Meson LFWF

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}} \phi_{\pi}(x)=\frac{4}{\sqrt{3} \pi} f_{\pi} \sqrt{x(1-x)}
$$

$$
f_{\pi}=\sqrt{P_{q \bar{q}}} \frac{\sqrt{3}}{8} \kappa=92.4 \mathrm{MeV}
$$

Provides Connection of Confinement to Hadron Structure

AdS/QCD Holographic Wave Function for the ρ Meson and Diffractive ρ Meson Electroproduction

(b) ZEUS

Prediction from
Light-Front Holography

$$
\psi_{M}\left(x, k_{\perp}\right)=\frac{4 \pi}{\kappa \sqrt{x(1-x)}} e^{-\frac{k_{\perp}^{2}}{2 \kappa^{2} x(1-x)}}
$$

Dressed soft-wall current brings in higher Fock states and more vector meson poles

Pion Form Factor from AdS/QCD and Light-Front Holography

AdS/QCD
Soft-Wall Model

Single scheme-independent fundamental mass scale

$$
\kappa
$$

de Tèramond, Bosch, sjb

Light-Front Holography

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Confinement Potential!
Conformal symmetry of the action
Confinement scale:

$$
\kappa \simeq 0.6 \mathrm{GeV}
$$

($\mathbf{m}_{\mathrm{q}}=\mathbf{0}$)
$1 / \kappa \simeq 1 / 3 \mathrm{fm}$
de Alfaro, Fubini, Furlan:
Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

Bjorken sum rule defines effective charge

$\alpha_{g 1}\left(Q^{2}\right)$
$\int_{0}^{1} d x\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] \equiv \frac{g_{a}}{6}\left[1-\frac{\alpha_{g 1}\left(Q^{2}\right)}{\pi}\right]$

- Can be used as standard QCD coupling
- Well measured
- Asymptotic freedom at large $\mathbf{Q}^{\mathbf{2}}$
- Computable at large $\mathbf{Q}^{\mathbf{2}}$ in any pQCD scheme - Universal $\boldsymbol{\beta}_{0,} \boldsymbol{\beta}_{1}$

Novel World of Hadron Physics

Bjorken sum rule defines effective charge

$$
\int_{0}^{1} d x\left[g_{1}^{e p}\left(x, Q^{2}\right)-g_{1}^{e n}\left(x, Q^{2}\right)\right] \equiv \frac{g_{a}}{6}\left[1-\frac{\alpha_{g 1}\left(Q^{2}\right)}{\pi}\right]
$$

- Can be used as standard QCD coupling
- Well measured
$\alpha_{g 1}\left(Q^{2}\right)$
- Asymptotic freedom at large Q^{2}
- Computable at large Q^{2} in any pQCD scheme
- Universal $\beta_{\mathrm{o}}, \beta_{\mathrm{I}}$

Deur, de Teramond, sjb

- Consider five-dim gauge fields propagating in AdS_{5} space in dilaton background $\varphi(z)=\kappa^{2} z^{2}$

$$
S=-\frac{1}{4} \int d^{4} x d z \sqrt{g} e^{\varphi(z)} \frac{1}{g_{5}^{2}} G^{2}
$$

- Flow equation

$$
\frac{1}{g_{5}^{2}(z)}=e^{\varphi(z)} \frac{1}{g_{5}^{2}(0)} \quad \text { or } \quad g_{5}^{2}(z)=e^{-\kappa^{2} z^{2}} g_{5}^{2}(0)
$$

where the coupling $g_{5}(z)$ incorporates the non-conformal dynamics of confinement

- YM coupling $\alpha_{s}(\zeta)=g_{Y M}^{2}(\zeta) / 4 \pi$ is the five dim coupling up to a factor: $g_{5}(z) \rightarrow g_{Y M}(\zeta)$
- Coupling measured at momentum scale Q

$$
\alpha_{s}^{A d S}(Q) \sim \int_{0}^{\infty} \zeta d \zeta J_{0}(\zeta Q) \alpha_{s}^{A d S}(\zeta)
$$

- Solution

$$
\alpha_{s}^{A d S}\left(Q^{2}\right)=\alpha_{s}^{A d S}(0) e^{-Q^{2} / 4 \kappa^{2}}
$$

where the coupling $\alpha_{s}^{A d S}$ incorporates the non-conformal dynamics of confinement

Running Coupling from Light-Front Holography and AdS/QCD

 Analytic, defined at all scales, IR Fixed Point

Deur, de Teramond, sjb

Analytic, defined at all scales, IR Fixed Point

AdS/QCD dilaton captures the higher twist corrections to effective charges for $Q<\mathbf{I G e V}$

$$
e^{\varphi}=e^{+\kappa^{2} z^{2}}
$$

Deur, de Teramond, sjb
$m_{\rho}=\sqrt{2} \kappa$

Prediction from AdS/QCD:

$$
\Lambda_{\overline{M S}}=0.5983 \kappa=0.5983 \frac{m_{\rho}}{\sqrt{2}}=0.4231 m_{\rho}=0.328 \mathrm{GeV}
$$

$$
\Lambda_{\overline{M S}}=0.5983 \kappa=0.5983 \frac{m_{\rho}}{\sqrt{2}}=0.4231 m_{\rho}=0.328 \mathrm{GeV}
$$

Applications of Nonperturbative Running Coupling from AdS/QCD

- Sivers Effect in SIDIS, Drell-Yan
- Double Boer-Mulders Effect in DY
- Diffractive DIS
- Heavy Quark Production at Threshold

All involve gluon exchange at small momentum transfer

Upiversity Novel World of Hadron Physics
$A d S / Q C D$
Soft-Wall Model
de Tèramond, Dosch, sjb

Light-Front Holography

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Unique
Confinement Potential!
Conformal symmetry of the action

Confinement scale:

$$
\kappa \simeq 0.6 \mathrm{GeV}
$$

$$
1 / \kappa \simeq 1 / 3 \mathrm{fm}
$$

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

AdS/QCD
Soft-Wall Model

Semi-Classical Approximation to QCD Relativistic, frame-independent Unique color-confining potential Zero mass pion for massless quarks Regge trajectories with equal slopes in n and L
 Light-Front Wavefunctions

Light-Front Schrödinger Equation
Conformal symmetry of the action

Features of Soft-Wall AdS/QCD

- Single-variable frame-independent radial Schrodinger equation
- Massless pion ($\mathbf{m}_{\mathbf{q}}=\mathbf{0}$)
- Regge Trajectories: universal slope in n and L
- Valid for all integer \mathbf{J} \& \mathbf{S}.
- Dimensional Counting Rules for Hard Exclusive Processes
- Phenomenology: Space-like and Time-like Form Factors
- LF Holography: LFWFs; broad distribution amplitude
- No large Nc limit required

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1) \quad e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

- $\boldsymbol{\zeta}_{2}$ confinement potential and dilaton profile unique!
- Linear Regge trajectories in n and L: same slope!
- Massless pion in chiral limit! No vacuum condensate!
- Conformally invariant action for massless quarks retained despite mass scale
- Same principle, equation of motion as de Alfaro, Furlan, Fubini, Conformal Invariance in Quantum Mechanics Nuovo Cim. A34 (1976) 569

$$
\begin{gathered}
G\left|\psi(\tau)>=i \frac{\partial}{\partial \tau}\right| \psi(\tau)> \\
G=u H+v D+w K \\
G=H_{\tau}=\frac{1}{2}\left(-\frac{d^{2}}{d x^{2}}+\frac{g}{x^{2}}+\frac{4 u w-v^{2}}{4} x^{2}\right)
\end{gathered}
$$

Retains conformal invariance of action despite mass scale!

$$
4 u w-v^{2}=\kappa^{4}=[M]^{4}
$$

Identical to LF Hamiltonian with unique potential and dilaton!

- Dosch, de Teramond, sjb

$$
\begin{gathered}
{\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)} \\
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
\end{gathered}
$$

- Mass scale does not appear in the QCD Lagrangian (massless quarks)
- Dimensional Transmutation? Requires external constraint such as $\alpha_{s}\left(M_{Z}\right)$
- dAFF: Confinement Scale K appears spontaneously via the Hamiltonian: $\quad G=u H+v D+w K \quad 4 u w-v^{2}=\kappa^{4}=[M]^{4}$
- The confinement scale regulates infrared divergences, connects $\Lambda_{\text {QCD }}$ to the confinement scale K
- Only dimensionless mass ratios (and M times R) predicted
- Mass and time units $[\mathrm{GeV}]$ and $[\mathrm{sec}]$ from physics external to QCD
- New feature: bounded frame-independent relative time

dAFF: New Time Variable

$\tau=\frac{2}{\sqrt{4 u w-v^{2}}} \arctan \left(\frac{2 t w+v}{\sqrt{4 u w-v^{2}}}\right)$,

- Identify with difference of LF time $\Delta \mathbf{x}^{+} / \mathbf{P}^{+}$ between constituents
- Finite range
- Measure in Double Parton Processes

Novel World of Hadron Physics
Stan Brodsky
SHAC

Interpretation of Mass Scale κ

- Does not affect conformal symmetry of QCD action
- Self-consistent regularization of IR divergences
- Determines all mass and length scales for zero quark mass
- Compute scheme-dependent $\Lambda_{\overline{M S}}$ determined in terms of
- Value of K itself not determined -- place holder
- Need external constraint such as f_{π}

Baryon Spectroscopy from AdS/QCD and Light-Front Holography

de Teramond, sjb

$$
\begin{array}{ll}
\mathcal{M}_{n, L, S}^{2(+)}=4 \kappa^{2}\left(n+L+\frac{S}{2}+\frac{3}{4}\right), & \text { positive parity } \\
\mathcal{M}_{n, L, S}^{2(-)}=4 \kappa^{2}\left(n+L+\frac{S}{2}+\frac{5}{4}\right), & \text { negative parity }
\end{array}
$$

All confirmed resonances from PDG

See also Forkel, Beyer, Federico, Klempt

Table 1: $S U(6)$ classification of confirmed baryons listed by the PDG. The labels S, L and n refer to the internal spin, orbital angular momentum and radial quantum number respectively. The $\Delta \frac{5}{2}^{-}(1930)$ does not fit the $S U(6)$ classification since its mass is too low compared to other members 70-multiplet for $n=0, L=3$.

$$
\begin{gather*}
\left(-\frac{d^{2}}{d \zeta^{2}}+\lambda_{B}^{2} \zeta^{2}+2 \lambda_{B}\left(L_{B}+1\right)+\frac{4 L_{B}^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{+}=M^{2} \psi_{J}^{+}, \\
\left(-\frac{d^{2}}{d \zeta^{2}}+\lambda_{B}^{2} \zeta^{2}+2 \lambda_{B} L_{B}+\frac{4\left(L_{B}+1\right)^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{-}=M^{2} \psi_{J}^{-} . \\
M_{B}^{2}\left(n, L_{B}\right)=4 \lambda_{B}^{2}\left(n+L_{B}+1\right)
\end{gather*}
$$

Meson Equation

both chiralities

$$
\begin{array}{r}
\left(-\frac{d^{2}}{d \zeta^{2}}+\lambda_{M}^{2} \zeta^{2}+2 \lambda_{M}(J-1)+\frac{4 \nu^{2}-1}{4 \zeta^{2}}\right) \phi_{J}=M^{2} \phi_{J} \\
M_{M}^{2}\left(n, L_{M}, S=0\right)=4 \lambda_{M}^{2}\left(n+L_{M}\right) \quad \nu=L_{M}
\end{array}
$$

S=0, I=I Meson is superpartner of S=I/2, I=| Baryon
Meson-Baryon Degeneracy for $L_{M}=L_{B}+1$

$$
\lambda_{M}^{2}=\lambda_{B}^{2}=\kappa^{4}
$$

Fermionic Modes and Baryon Spectrum

[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]
[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

- Nucleon LF modes

$$
\begin{aligned}
\psi_{+}(\zeta)_{n, L} & =\kappa^{2+L} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{3 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+1}\left(\kappa^{2} \zeta^{2}\right) \\
\psi_{-}(\zeta)_{n, L} & =\kappa^{3+L} \frac{1}{\sqrt{n+L+2}} \sqrt{\frac{2 n!}{(n+L)!}} \zeta^{5 / 2+L} e^{-\kappa^{2} \zeta^{2} / 2} L_{n}^{L+2}\left(\kappa^{2} \zeta^{2}\right)
\end{aligned}
$$

- Normalization

$$
\int d \zeta \psi_{+}^{2}(\zeta)=\int d \zeta \psi_{-}^{2}(\zeta)=1
$$

Chiral Symmetry of Eigenstate!

- Eigenvalues

$$
\mathcal{M}_{n, L, S=1 / 2}^{2}=4 \kappa^{2}(n+L+1)
$$

- "Chiral partners"

$$
\frac{\mathcal{M}_{N(1535)}}{\mathcal{M}_{N(940)}}=\sqrt{2}
$$

Superconformal Algebra

$$
\begin{gathered}
\left\{\psi, \psi^{+}\right\}=1 \quad B=\frac{1}{2}\left[\psi^{+}, \psi\right]=\frac{1}{2} \sigma_{3} \\
\psi=\frac{1}{2}\left(\sigma_{1}-i \sigma_{2}\right), \quad \psi^{+}=\frac{1}{2}\left(\sigma_{1}+i \sigma_{2}\right)
\end{gathered}
$$

$$
\begin{gathered}
Q=\psi^{+}\left[-\partial_{x}+\frac{f}{x}\right], \quad Q^{+}=\psi\left[\partial_{x}+\frac{f}{x}\right], \quad S=\psi^{+} x, \quad S^{+}=\psi x \\
\left\{Q, Q^{+}\right\}=2 H, \quad\left\{S, S^{+}\right\}=2 K
\end{gathered}
$$

$$
\left\{Q, S^{+}\right\}=f-B+2 i D, \quad\left\{Q^{+}, S\right\}=f-B-2 i D
$$

generates conformal algebra

$[\mathrm{H}, \mathrm{D}]=\mathrm{i} \mathrm{H}, \quad[\mathrm{H}, \mathrm{K}]=2$ i $\mathrm{D}, \quad[\mathrm{K}, \mathrm{D}]=-\mathrm{i} \mathrm{K}$

Fubini and Rabinovici

Superconformal Algebra

de Teramond Dosh and SJB

$$
1+1
$$

$$
\left\{\psi, \psi^{+}\right\}=1
$$

two anti-commuting fermionic operators

$$
\psi=\frac{1}{2}\left(\sigma_{1}-i \sigma_{2}\right), \quad \psi^{+}=\frac{1}{2}\left(\sigma_{1}+i \sigma_{2}\right) \quad \text { Realisation as Pauli Matrices }
$$

$$
Q=\psi^{+}\left[-\partial_{x}+W(x)\right], \quad Q^{+}=\psi\left[\partial_{x}+W(x)\right],
$$

$$
W(x)=\frac{f}{x}
$$

(Conformal)

$$
S=\psi^{+} x, \quad S^{+}=\psi x
$$

Introduce new spinor operators

$$
Q \simeq \sqrt{H}, \quad S \simeq \sqrt{K}
$$

$$
\{Q, Q\}=\left\{Q^{+}, Q^{+}\right\}=0, \quad[Q, H]=\left[Q^{+}, H\right]=0
$$

Superconformal Algebra

Baryon Equation

Consider $R_{w}=Q+w S ; \quad w$: dimensions of mass squared
$G=\left\{R_{w}, R_{w}^{+}\right\}=2 H+2 w^{2} K+2 w f I-2 w B \quad 2 B=\sigma_{3}$

New Extended Hamiltonian G is diagonat:

$$
\begin{gathered}
G_{11}=\left(-\partial_{x}^{2}+w^{2} x^{2}+2 w f-w+\frac{4\left(f+\frac{1}{2}\right)^{2}-1}{4 x^{2}}\right) \\
G_{22}=\left(-\partial_{x}^{2}+w^{2} x^{2}+2 w f+w+\frac{4\left(f-\frac{1}{2}\right)^{2}-1}{4 x^{2}}\right) \\
\text { Identify } f-\frac{1}{2}=L_{B}, \quad w=\kappa^{2}
\end{gathered}
$$

Eigenvalue of $G: M^{2}(n, L)=4 \kappa^{2}\left(n+L_{B}+1\right)$

$$
\begin{gather*}
\left(-\frac{d^{2}}{d \zeta^{2}}+\lambda_{B}^{2} \zeta^{2}+2 \lambda_{B}\left(L_{B}+1\right)+\frac{4 L_{B}^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{+}=M^{2} \psi_{J}^{+}, \\
\left(-\frac{d^{2}}{d \zeta^{2}}+\lambda_{B}^{2} \zeta^{2}+2 \lambda_{B} L_{B}+\frac{4\left(L_{B}+1\right)^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{-}=M^{2} \psi_{J}^{-} . \\
M_{B}^{2}\left(n, L_{B}\right)=4 \lambda_{B}^{2}\left(n+L_{B}+1\right)
\end{gather*}
$$

Meson Equation

both chiralities

$$
\begin{array}{r}
\left(-\frac{d^{2}}{d \zeta^{2}}+\lambda_{M}^{2} \zeta^{2}+2 \lambda_{M}(J-1)+\frac{4 \nu^{2}-1}{4 \zeta^{2}}\right) \phi_{J}=M^{2} \phi_{J} \\
M_{M}^{2}\left(n, L_{M}, S=0\right)=4 \lambda_{M}^{2}\left(n+L_{M}\right) \quad \nu=L_{M}
\end{array}
$$

S=0, I=I Meson is superpartner of S=I/2, I=| Baryon
Meson-Baryon Degeneracy for $L_{M}=L_{B}+1$

$$
\lambda_{M}^{2}=\lambda_{B}^{2}=\kappa^{4}
$$

Chiral Features of Soft-Wall AdS/

 QCD Model- Boost Invariant
- Trivial LF vacuum! No condensate, but consistent with GMOR
- Massless Pion
- Hadron Eigenstates (even the pion) have LF Fock components of different L^{z}
- Proton: equal probability $\quad S^{z}=+1 / 2, L^{z}=0 ; S^{z}=-1 / 2, L^{z}=+1$

$$
J^{z}=+1 / 2:<L^{z}>=1 / 2,<S_{q}^{z}>=0
$$

- Self-Dual Massive Eigenstates: Proton is its own chiral partner.
- Label State by minimum L as in Atomic Physics
- Minimum L dominates at short distances
- AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=o.

No mass -degenerate parity partners!

- Compute Dirac proton form factor using SU(6) flavor symmetry

$$
F_{1}^{p}\left(Q^{2}\right)=R^{4} \int \frac{d z}{z^{4}} V(Q, z) \Psi_{+}^{2}(z)
$$

- Nucleon AdS wave function

$$
\Psi_{+}(z)=\frac{\kappa^{2+L}}{R^{2}} \sqrt{\frac{2 n!}{(n+L)!}} z^{7 / 2+L} L_{n}^{L+1}\left(\kappa^{2} z^{2}\right) e^{-\kappa^{2} z^{2} / 2}
$$

- Normalization $\quad\left(F_{1}{ }^{p}(0)=1, \quad V(Q=0, z)=1\right)$

$$
R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{2}(z)=1
$$

- Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

$$
V(Q, z)=\kappa^{2} z^{2} \int_{0}^{1} \frac{d x}{(1-x)^{2}} x^{\frac{Q^{2}}{4 \kappa^{2}}} e^{-\kappa^{2} z^{2} x /(1-x)}
$$

- Find

$$
F_{1}^{p}\left(Q^{2}\right)=\frac{1}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)}
$$

with $\mathcal{M}_{\rho_{n}}^{2} \rightarrow 4 \kappa^{2}(n+1 / 2)$

Using $S U(6)$ flavor symmetry and normalization to static quantities

Spacelike Pauti Form Factor
From overlap of $L=1$ and $L=0$ LFWFs

Nucleon Transition Form Factors

$$
F_{1 N \rightarrow N^{*}}^{p}\left(Q^{2}\right)=\frac{\sqrt{2}}{3} \frac{\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime \prime}}}\right)} .
$$

Proton transition form factor to the first radial excited state. Data from JLab

Space-Like Dirac Proton Form Factor

- Consider the spin non-flip form factors

$$
\begin{aligned}
F_{+}\left(Q^{2}\right) & =g_{+} \int d \zeta J(Q, \zeta)\left|\psi_{+}(\zeta)\right|^{2} \\
F_{-}\left(Q^{2}\right) & =g_{-} \int d \zeta J(Q, \zeta)\left|\psi_{-}(\zeta)\right|^{2}
\end{aligned}
$$

where the effective charges g_{+}and g_{-}are determined from the spin-flavor structure of the theory.

- Choose the struck quark to have $S^{z}=+1 / 2$. The two AdS solutions $\psi_{+}(\zeta)$ and $\psi_{-}(\zeta)$ correspond to nucleons with $J^{z}=+1 / 2$ and $-1 / 2$.
- For $S U(6)$ spin-flavor symmetry

$$
\begin{aligned}
F_{1}^{p}\left(Q^{2}\right) & =\int d \zeta J(Q, \zeta)\left|\psi_{+}(\zeta)\right|^{2} \\
F_{1}^{n}\left(Q^{2}\right) & =-\frac{1}{3} \int d \zeta J(Q, \zeta)\left[\left|\psi_{+}(\zeta)\right|^{2}-\left|\psi_{-}(\zeta)\right|^{2}\right]
\end{aligned}
$$

where $F_{1}^{p}(0)=1, F_{1}^{n}(0)=0$.

Predictions for nucleon form factors from $A d S / Q C D$
Using $S U(6)$ flavor symmetry and normalization to static quantities

Flavor Decomposition of Elastic Nucleon Form Factors

G. D. Cates et al. Phys. Rev. Lett. 106, 252003 (2011)

- Proton SU(6) WF: $\quad F_{u, 1}^{p}=\frac{5}{3} G_{+}+\frac{1}{3} G_{-}, \quad F_{d, 1}^{p}=\frac{1}{3} G_{+}+\frac{2}{3} G_{-}$
- Neutron SU(6) WF: $\quad F_{u, 1}^{n}=\frac{1}{3} G_{+}+\frac{2}{3} G_{-}, \quad F_{d, 1}^{n}=\frac{5}{3} G_{+}+\frac{1}{3} G_{-}$

Nucleon Transition Form Factors

- Compute spin non-flip EM transition $N(940) \rightarrow N^{*}(1440): \quad \Psi_{+}^{n=0, L=0} \rightarrow \Psi_{+}^{n=1, L=0}$
- Transition form factor

$$
F_{1}^{p}{ }_{N \rightarrow N^{*}}\left(Q^{2}\right)=R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{n=1, L=0}(z) V(Q, z) \Psi_{+}^{n=0, L=0}(z)
$$

- Orthonormality of Laguerre functions $\quad\left(F_{1}{ }_{N \rightarrow N^{*}}^{p}(0)=0, \quad V(Q=0, z)=1\right)$

$$
R^{4} \int \frac{d z}{z^{4}} \Psi_{+}^{n^{\prime}, L}(z) \Psi_{+}^{n, L}(z)=\delta_{n, n^{\prime}}
$$

- Find

$$
F_{1}{ }_{N \rightarrow N^{*}}\left(Q^{2}\right)=\frac{2 \sqrt{2}}{3} \frac{\frac{Q^{2}}{M_{P}^{2}}}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{\prime}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime \prime}}}\right)}
$$

with $\mathcal{M}_{\rho_{n}}^{2} \rightarrow 4 \kappa^{2}(n+1 / 2)$
de Teramond, sjb
Consistent with counting rule, twist 3

Nucleon Transition Form Factors

$$
F_{1 N \rightarrow N^{*}}^{p}\left(Q^{2}\right)=\frac{\sqrt{2}}{3} \frac{\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}}{\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime}}^{2}}\right)\left(1+\frac{Q^{2}}{\mathcal{M}_{\rho^{\prime \prime}}}\right)} .
$$

AdS\QCD
Light-Front Holography

Proton transition form factor to the first radial excited state. Data from JLab

$$
\begin{gather*}
\left(-\frac{d^{2}}{d \zeta^{2}}+\lambda_{B}^{2} \zeta^{2}+2 \lambda_{B}\left(L_{B}+1\right)+\frac{4 L_{B}^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{+}=M^{2} \psi_{J}^{+}, \\
\left(-\frac{d^{2}}{d \zeta^{2}}+\lambda_{B}^{2} \zeta^{2}+2 \lambda_{B} L_{B}+\frac{4\left(L_{B}+1\right)^{2}-1}{4 \zeta^{2}}\right) \psi_{J}^{-}=M^{2} \psi_{J}^{-} . \\
M_{B}^{2}\left(n, L_{B}\right)=4 \lambda_{B}^{2}\left(n+L_{B}+1\right)
\end{gather*}
$$

Meson Equation

both chiralities

$$
\begin{array}{r}
\left(-\frac{d^{2}}{d \zeta^{2}}+\lambda_{M}^{2} \zeta^{2}+2 \lambda_{M}(J-1)+\frac{4 \nu^{2}-1}{4 \zeta^{2}}\right) \phi_{J}=M^{2} \phi_{J} \\
M_{M}^{2}\left(n, L_{M}, S=0\right)=4 \lambda_{M}^{2}\left(n+L_{M}\right) \quad \nu=L_{M}
\end{array}
$$

S=0, I=I Meson is superpartner of S=I/2, I=| Baryon
Meson-Baryon Degeneracy for $L_{M}=L_{B}+1$

$$
\lambda_{M}^{2}=\lambda_{B}^{2}=\kappa^{4}
$$

Superconformal Algebra

$$
\frac{M^{2}}{4 \kappa^{2}}
$$

Same к

$S=0$, $I=\mid$ Meson is superpartner of $S=\mid / 2$, $|=|$ Baryon

Superconformal AdS Light-Front Holographic QCD (LFHOCD):
$\lambda=\kappa^{2}$
Identical meson and baryon spectra!

Dosch, de Teramond, sjb

Features of Supersymmetric Equations

- J =L+S baryon simultaneously satisfies both equations of G with $L, L+1$ for same mass eigenvalue
- $J^{z}=L^{z}+1 / 2=\left(L^{z}+1\right)-1 / 2$

$$
S^{z}= \pm 1 / 2
$$

- Baryon spin carried by quark orbital angular momentum: < ${ }^{\text {zz }}>=L^{\text {² }}+1 / 2$
- Mass-degenerate meson "superpartner" with $L_{M}=L_{B}+1$. "Shifted meson-baryon Duality" Meson and baryon have same κ !

Timelike Transition Form Factors

Prediction from Super Conformal AdS/QCD: Same Form Factors for $H=M$ and $H=B$ if $L_{M}=L_{B}+1$

$$
A d S / Q C D
$$

Soft-Wall Model

$$
e^{\varphi(z)}=e^{+\kappa^{2} z^{2}}
$$

$$
\left[-\frac{d^{2}}{d \zeta^{2}}+\frac{1-4 L^{2}}{4 \zeta^{2}}+U(\zeta)\right] \psi(\zeta)=\mathcal{M}^{2} \psi(\zeta)
$$

Light-Front Schrödinger Equation

$$
U(\zeta)=\kappa^{4} \zeta^{2}+2 \kappa^{2}(L+S-1)
$$

Unique

Confinement Potential!
Preserves Conformal Symmetry of the action

Confinement scale:

$$
\kappa \simeq 0.6 \mathrm{GeV}
$$

$$
1 / \kappa \simeq 1 / 3 \mathrm{fm}
$$

de Alfaro, Fubini, Furlan:
Fubini, Rabinovici:

Scale can appear in Hamiltonian and EQM without affecting conformal invariance of action!

AdS/QCD
Soft-Wall Model

Semi-Classical Approximation to QCD Relativistic, frame-independent Unique color-confining potential Zero mass pion for massless quarks Regge trajectories with equal slopes in n and L
 Light-Front Wavefunctions

Light-Front Schrödinger Equation
Conformal symmetry of the action

Some Features of AdS/QCD

- Regge spectroscopy-same slope in n,Lfor mesons,
- Chiralfeaturesfor $m_{q}=0: \boldsymbol{m}_{\pi=0}$, chiral-invariant proton
- Hadronic LFWFs
- Counting Rules
- Connection between hadron masses and $\Lambda_{\overline{M S}}$

Superconformal AdS Light-Front Holographic QCD (LFHQCD) Meson-Baryon Mass Degeneracy for $L_{M}=L_{B}+1$

Interpretation of Mass Scale κ

- Does not affect conformal symmetry of QCD action
- Self-consistent regularization of IR divergences
- Determines all mass and length scales for zero quark mass
- Compute scheme-dependent $\Lambda_{\overline{M S}}$ determined in terms of
- Value of κ itself not determined -- place holder
- Need external constraint such as f_{π}
"Zero-Parameter" Model

New Insights into Hadron Physics

- Origin of quark confinement?
- Determination of the QCD mass scale
- Novel hadronic states
- Novel QCD phenomena
- Supersymmetry in hadron physics
- Light-Front Holography
- New Physics Opportunities at JLab

Novel World of Hadron Physics

- Hadronization at the Amplitude Level
- Diffractive dissociation of pion and proton to jets
- Identify the factorization Scale for ERBL, DGLAP evolution: $\mathbf{Q}_{\mathbf{o}}$
- Compute Tetraquark Spectroscopy Sequentially
- Update SU(6) spin-flavor symmetry
- Heavy Quark States: Supersymmetry, not conformal
- Compute higher Fock states; e.g. Intrinsic Heavy Quarks
- Nuclear States - Hidden Color

Hadronization at the Amplitude Level

Construct helicity amplitude using Light-Front Perturbation theory; coalesce quarks via LFWFs

Event amplitude generator

Off-Shell T-Matrix

- Quarks and Gluons Off-Shell
- LFPth: Minimal Time-Ordering Diagrams-Only positive k+
- Jz Conservation at every vertex
- Frame-Independent
- Cluster Decomposition Chueng Ji, sjb

- Renormalization- alternate denominators Roskies, Suaya, sjb
- LFWF takes Off-shell to On-shell

Novel World of Hadron Physics

Four-Quark Hadrons: an Updated Review

A. ESPOSITOA, L. GUERRIERI, F. PICCININI, A. PILLONI and A. POLOSA

arXiv:1411.5997v2

A. ESPOSITOA, L. GUERRIERI, F. PICCININI, A. PILLONI and A. POLOSA

State	$M(\mathrm{MeV})$	$\Gamma(\mathrm{MeV})$	$J^{P C}$	Process (mode)	Experiment (\# $\#$)
$Y(4220)$	$4196{ }_{-30}^{+35}$	39 ± 32	1^{--}	$e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-} h_{c}\right)$	BES III data ${ }^{63,64}$ (4.5)
$Y(4230)$	4230 ± 8	38 ± 12	1^{--}	$e^{+} e^{-} \rightarrow\left(\chi_{c 0} \omega\right)$	BES III ${ }^{65}$ (>9)
$Z(4250)^{+}$	$4248{ }_{-45}^{+185}$	177_{-72}^{+321}	??+	$\bar{B}^{0} \rightarrow K^{-}\left(\pi^{+} \chi_{c 1}\right)$	Belle ${ }^{54}$ (5.0), BABAR ${ }^{55}$ (2.0)
$Y(4260)$	4250 ± 9	108 ± 12	1^{--}	$e^{+} e^{-} \rightarrow(\pi \pi J / \psi)$	B^{\prime} ABAR 66,67 (8), CLEO ${ }^{68,69}$ (11)
					Belle ${ }^{41,53}$ (15), BES III^{40} (np)
				$e^{+} e^{-} \rightarrow\left(f_{0}(980) J / \psi\right)$	
				$e^{+} e^{-} \rightarrow\left(\pi^{-} Z_{c}(3900)^{+}\right)$	BES III ${ }^{40}$ (8), Belle 41 (5.2)
				$e^{+} e^{-} \rightarrow(\gamma X(3872))$	BES III ${ }^{70}$ (5.3)
$Y(4290)$	4293 ± 9	222 ± 67	1^{--}	$e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-} h_{c}\right)$	BES III data ${ }^{63,64}$ (np)
$X(4350)$	$4350.6{ }_{-5.1}^{+4.6}$	13_{-10}^{+18}	$0 / 2^{\text {? }+}$	$e^{+} e^{-} \rightarrow e^{+} e^{-}(\phi J / \psi)$	Belle ${ }^{58}$ (3.2)
$Y(4360)$	4354 ± 11	78 ± 16	1^{--}	$e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-} \psi(2 S)\right)$	Belle ${ }^{71}$ (8), BABAR ${ }^{72}$ (np)
$Z(4430){ }^{+}$	4478 ± 17	180 ± 31	1^{+-}	$\bar{B}^{0} \rightarrow K^{-}\left(\pi^{+} \psi(2 S)\right)$	Belle ${ }^{73,74}$ (6.4), BABAR ${ }^{75}$ (2.4)
					LHCb^{76} (13.9)
				$\bar{B}^{0} \rightarrow K^{-}\left(\pi^{+} J / \psi\right)$	Belle ${ }^{62}$ (4.0)
$Y(4630)$	4634_{-11}^{+9}	92_{-32}^{+41}	1^{--}	$e^{+} e^{-} \rightarrow\left(\Lambda_{c}^{+} \bar{\Lambda}_{c}^{-}\right)$	Belle ${ }^{77}$ (8.2)
$Y(4660)$	4665 ± 10	53 ± 14	1^{--}	$e^{+} e^{-} \rightarrow\left(\pi^{+} \pi^{-} \psi(2 S)\right)$	Belle ${ }^{71}$ (5.8), BABAR ${ }^{72}$ (5)
$Z_{b}(10610)^{+}$	10607.2 ± 2.0	18.4 ± 2.4	1^{+-}	$\Upsilon(5 S) \rightarrow \pi(\pi \Upsilon(n S))$	Belle ${ }^{78,79}$ (>10)
				$\Upsilon(5 S) \rightarrow \pi^{-}\left(\pi^{+} h_{b}(n P)\right)$	Belle ${ }^{78}$ (16)
				$\Upsilon(5 S) \rightarrow \pi^{-}\left(B \bar{B}^{*}\right)^{+}$	Belle ${ }^{80}$ (8)
$Z_{b}(10650)^{+}$	10652.2 ± 1.5	11.5 ± 2.2	1^{+-}	$\Upsilon(5 S) \rightarrow \pi^{-}\left(\pi^{+} \Upsilon(n S)\right)$	Belle ${ }^{78}$ (>10)
				$\Upsilon(5 S) \rightarrow \pi^{-}\left(\pi^{+} h_{b}(n P)\right)$	Belle ${ }^{78}$ (16)
				$\Upsilon(5 S) \rightarrow \pi^{-}\left(B^{*} \bar{B}^{*}\right)^{+}$	Belle ${ }^{80}$ (6.8)

Tetraquarks

$\mathrm{D}^{0}-\overline{\mathrm{D}^{00}}$ "molecule"

Belle, BaBar:

$$
\begin{aligned}
& \mathcal{B}\left(B^{0} \rightarrow K^{+} Z(4430)^{-}\right) \times \mathcal{B}\left(Z(4430)^{-} \rightarrow \psi(2 S) \pi^{-}\right)=\left(6.0_{-2.0-1.4}^{+1.7+2.5}\right) \times 10^{-5} . \\
& \mathcal{B}\left(B^{0} \rightarrow K^{+} Z(4430)^{-}\right) \times \mathcal{B}\left(Z(4430)^{-} \rightarrow J / \psi \pi^{-}\right)=\left(5.4_{-1.0}^{+4.0+1.1}\right) \times 10^{-6} .
\end{aligned}
$$

Surprising Result:
Dominance of large-size $\Psi \Psi^{\prime}$ vs \mathbf{J} / Ψ decays!

Diquark-Diquark

$$
Z_{c}^{+}([c u][\bar{c} \bar{d}]) \rightarrow \pi^{+} \psi^{\prime}
$$

Formation of charmonium at large separation:

Dominance of overlap with large-size Ψ^{\prime} vs J / Ψ decays

> New Opportunities at Jlab

- QCD condensates are vacuum effects
- QCD gives Io 42 to the cosmological constant
- QCD Confinement can only be understood in LGTh
- Anti-Shadowing is Universal
- ISI and FSI are higher twist effects and universal
- High transverse momentum hadrons arise only from jet fragmentation -- baryon anomaly!
- Heavy quarks only from gluon splitting
- Renormalization scale in PQCD cannot be fixed
Novel World of Hadron Physics

Novel World of Hadron Physics

䯨
Universityof VIRGINIA

Stanford University

