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Goal  of Science:  
To understand the laws of physics and  the fundamental 
composition of matter at the shortest possible distances.
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First Evidence for Nuclear Structure of Atoms

Rutherford Scattering
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Scattering at Large 
Angles!  !

“Point-like” Nucleus!
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Gold  
Atoms

e�

�x⇥�p > h
2⇥

�

1fm = 10�15m = 10�13cm

1 GeV resolves 10�16 m = 0.1 fm

1 MeV resolves 10�13 m = 100 fm

1 KeV resolves 10�10 m = 1 Angstrom

Ernest Rutherford 
1911
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First Evidence for Quark Structure of Matter

Deep Inelastic Electron-Proton Scattering
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DGLAP Evolution



Discovery of the Quark Structure of Matter

1967



SLAC  Two-Mile Linear Accelerator 

Pief



1967 SLAC Experiment: 
Scatter 20 GeV/c Electrons on protons  

in a Hydrogen Target 
Discovery of the Quark Structure of Matter

Friedman, Kendall, Taylor: Nobel Prize

⇥ = 2Mp�
Q2

xBjorken = Q2

2Mp�

Measure rate as a function of energy loss �

and momentum transfer Q

Scaling at fixed xBjorken = Q2

2Mp�
= 1

⇥

ep � e⇥X

Discovery of quarks!



Deep inelastic electron-proton scattering

• Rutherford scattering using 
very high-energy electrons 
striking protons

Discovery of quarks!
Expectation
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⇥ = 2Mp�
Q2

xBjorken = Q2

2Mp�

Measure rate as a function of energy loss �

and momentum transfer Q

Scaling at fixed xBjorken = Q2

2Mp�
= 1

⇥

ep � e⇥X

ep ⇤ e⌅X

e+ e� �

e+e�e+e� e+e�� e+e�

ge ⇥ 2

1
2ge = 1.001 159 652 201(30)

1
2ge = 1.001 159 652 193(10)

ge accurate to 11 figures!

⇤(⇥, b⌅)

E⇤ = E � �, �q

Q2 = �q2 � �2

⇥ = y�P+

2

|b⌅|(GeV�1)

pp ⇥ pp

e+e� ⇥ pp̄

Q2

p

9

Discovery of Bjorken Scaling 
Electron scatters on point-like quarks!

⇥ = 2Mp�
Q2

xBjorken = Q2

2Mp�

Measure rate as a function of energy loss �

and momentum transfer Q

Scaling at fixed xBjorken = Q2

2Mp�
= 1

⇥

ep � e⇥X

⇥ = 2Mp�
Q2

xBjorken = Q2

2Mp�

Measure rate as a function of energy loss �

and momentum transfer Q

Scaling at fixed xBjorken = Q2

2Mp�
= 1

⇥

ep � e⇥X

⇥ = 2Mp�
Q2

xBjorken = Q2

2Mp�

Measure rate as a function of energy loss �

and momentum transfer Q

Scaling at fixed xBjorken = Q2

2Mp�
= 1

⇥

ep � e⇥X

No intrinsic length scale !

Q2

⇤(⇥, b⌅)

E⇤ = E � �, �q

Q2

⇥ = y�P+

2

|b⌅|(GeV�1)

pp ⇥ pp

e+e� ⇥ pp̄

p

SLAC 
1967



Gell Mann: “Three 
Quarks for Mr. Mark”

Quarks in the Proton

p  =  (u u d)

1fm = 10�15m = 10�13cm

cm

�cm = 90o

Z1/3

Sz = +1
2

u

�++

1fm = 10�15m = 10�13cm

cm

�cm = 90o

Z1/3

Sz = +1
2

u

�++

Zweig:  “Aces, 
Deuces, Treys” 

Feynman & 
Bjorken:  

“Parton” model

Bj: Wolf Prize, EPS Award
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Pauli Exclusion Principle!

spin-half quarks cannot be in same quantum state !

u

u

u

u

�++

Jz = +3
2

d⇥
dt (pp⌅ pp) = F (�CM)

s10

Data: n = 9.7± 0.5

n = 4⇥ 3� 2 = 10

d⇥
dt (K

+p⌅ K+p) = F (�CM)
s8

u

�++

Jz = +3
2

d⇥
dt (pp⌅ pp) = F (�CM)

s10

Data: n = 9.7± 0.5

n = 4⇥ 3� 2 = 10

d⇥
dt (K

+p⌅ K+p) = F (�CM)
s8

Three Colors (Parastatistics) Solves Paradox 

Sz = +1
2

u

�++

Jz = +3
2

d⇥
dt (pp⌅ pp) = F (�CM)

s10

Data: n = 9.7± 0.5

n = 4⇥ 3� 2 = 10

Sz = +1
2

u

�++

Jz = +3
2

d⇥
dt (pp⌅ pp) = F (�CM)

s10

Data: n = 9.7± 0.5

n = 4⇥ 3� 2 = 10

Sz = +1
2

u

�++

Jz = +3
2

d⇥
dt (pp⌅ pp) = F (�CM)

s10

Data: n = 9.7± 0.5

n = 4⇥ 3� 2 = 10

Why are there three colors of quarks?

3 Colors Combine : White SU(NC), NC = 3

Greenberg
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e+e� ⌅ �⇤ ⌅ µ+µ�

e+e� ⌅ �⇤ ⌅ qq̄

Re+e�(Ecm) = ⇤(e+e�⌅hadrons)
⇤(e+e�⌅µ+µ)

Re+e�(Ecm) = Ncolors ⇥
�

q e2q

Data:

3⇥ [(�1
3)

2 + (2
3)

2 + (�1
3)

2] = 2

Electron-Positron Annihilation

e+

e�

µ+

µ�

e+e� ⇤ �⇥ ⇤ µ+µ�

e+e� ⇤ �⇥ ⇤ qq̄

Re+e�(Ecm) = ⇤(e+e�⇤hadrons)
⇤(e+e�⇤µ+µ)

e+

e�

µ+

µ�

e+e� ⇤ �⇥ ⇤ µ+µ�

e+e� ⇤ �⇥ ⇤ qq̄

Re+e�(Ecm) = ⇤(e+e�⇤hadrons)
⇤(e+e�⇤µ+µ)

e+

e�

µ+

µ�

e+e� ⇤ �⇥ ⇤ µ+µ�

e+e� ⇤ �⇥ ⇤ qq̄

Re+e�(Ecm) = ⇤(e+e�⇤hadrons)
⇤(e+e�⇤µ+µ)

e+

e�

µ+

µ�

e+e� ⇤ �⇥ ⇤ µ+µ�

e+e� ⇤ �⇥ ⇤ qq̄

Re+e�(Ecm) = ⇤(e+e�⇤hadrons)
⇤(e+e�⇤µ+µ)

e+

�⇥

e�

µ+

µ�

e+e� ⇤ �⇥ ⇤ µ+µ�

e+e� ⇤ �⇥ ⇤ qq̄



SPEAR (electron-positron collider): %
discovery of the ψ (c c), D(c,d), and τ  lepton



SLAC Evolution: SPEAR, PEP-II/BaBar, SLC/SLD, FACET, LCLS, LCLS II...
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e+

e�

µ+

µ�

e+e� ⇤ �⇥ ⇤ µ+µ�

e+e� ⇤ �⇥ ⇤ qq̄

Re+e�(Ecm) = ⇤(e+e�⇤hadrons)
⇤(e+e�⇤µ+µ)

e+

e�

µ+

µ�

e+e� ⇤ �⇥ ⇤ µ+µ�

e+e� ⇤ �⇥ ⇤ qq̄

Re+e�(Ecm) = ⇤(e+e�⇤hadrons)
⇤(e+e�⇤µ+µ)

e+

�⇥

e�

µ+

µ�

e+e� ⇤ �⇥ ⇤ µ+µ�

e+e� ⇤ �⇥ ⇤ qq̄

e+

�⇥

e�

µ+

µ�

e+e� ⇤ �⇥ ⇤ µ+µ�

e+e� ⇤ �⇥ ⇤ qq̄

e+

q

q̄

�⇥

e�

µ+

µ�

e+

q

q̄

�⇥

e�

µ+

µ�

Ratio to muon pairs proportional to quark charge squared 	

and the number of colors

Re+e�(Ecm) = ⇥(e+e�⇤hadrons)
⇥(e+e�⇤µ+µ)

Re+e�(Ecm) = Ncolors ⇥
�

q e2q

Data:

NC = 3

e2q = 4
9 u, c

e2q = 1
9 d, s, b

Electron-Positron Annihilation
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How to Count Quarks
⇤(⇥, b⇤)

u

ū

E⇥ = E � �, �q

Q2 = �q2 � �2

⇥ = y�P+

2

|b⇤|(GeV�1)

⇤(⇥, b⇤)

u

ū

E⇥ = E � �, �q

Q2 = �q2 � �2

⇥ = y�P+

2

|b⇤|(GeV�1)

Color-triplet "
quark representation
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How to Count Quarks

Re+e�(Ecm) = ⇥(e+e�⇤hadrons)
⇥(e+e�⇤µ+µ)

Re+e�(Ecm) = Ncolors ⇥
�

q e2q

Data:

3⇥ [(�1
3)

2 + (2
3)

2 + (�1
3)

2] = 2

Add NC ⇥ e2c = 3⇥ (2
3)

2 = 4
3

Add NC ⇥ e2b = 3⇥ (�1
3)

2 = 1
3

Re+e�(Ecm) = ⇥(e+e�⇤hadrons)
⇥(e+e�⇤µ+µ)

Re+e�(Ecm) = Ncolors ⇥
�

q e2q

Data:

3⇥ [(�1
3)

2 + (2
3)

2 + (�1
3)

2] = 2

�R = NC ⇥ e2c = 3⇥ (2
3)

2 = 4
3

�R = NC ⇥ e2b = 3⇥ (�1
3)

2 = 1
3

J/� = (cc̄)1S

� = (b̄b)1S

J/� = (cc̄)1S

� = (b̄b)1S

�R = NC ⇥ e2c = 3⇥ (2
3)

2 = 4
3

�R = NC ⇥ e2b = 3⇥ (�1
3)

2 = 1
3

NC = 3

eu,c = 2
3

ed,s,b = �1
3

J/� = (cc̄)1S

⇥ = (b̄b)1S

Re+e�(Ecm) = ⇥(e+e�⇤hadrons)
⇥(e+e�⇤µ+µ)

Re+e�(Ecm) = Ncolors ⇥
�

q e2q

Data:

NC = 3

e2q = 4
9 u, c

e2q = 1
9 d, s, b

Re+e�(Ecm) = ⇥(e+e�⇤hadrons)
⇥(e+e�⇤µ+µ)

Re+e�(Ecm) = Ncolors ⇥
�

q e2q

Data:

NC = 3

e2q = 4
9 u, c

e2q = 1
9 d, s, b

18
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Primary Evidence for Quarks

• Electron-Proton Inelastic Scattering:                       
Electron scatters on pointlike constituents with fractional 
charge; final-state jets$

• Electron-Positron Annihilation:                                
Production of pointlike pairs with fractional charges      
and 3 colors;  quark, antiquark, gluon jets$

• Exclusive hard scattering reactions:                      
probability that hadron stays intact counts number of  its 
pointlike constituents:

19

Quark Counting Rules

e+e� ⇥ X

ep ⇥ e⌅X

pp ⇥ pp, �p ⇥ ⇥+n ep ⇥ ep

Probability ⇤ 1

P
nq�1
⇧

Probability ⇤ [ 1
P⇧

]nq�1

e+e� ⇥ X

ep ⇥ e⌅X

pp ⇥ pp, �p ⇥ ⇥+n ep ⇥ ep

Probability ⇤ 1

P
nq�1
⇧

Probability ⇤ [ 1
P⇧

]nq�1

e+e� ⇥ X

ep ⇥ e⌅X

pp ⇥ pp, �p ⇥ ⇥+n, ep ⇥ ep

Probability ⇤ 1

P
nq�1
⇧

Probability ⇤ [ 1
P⇧

]nq�1
Quark interchange  describes angular distribution 



Higgs field gives 
particles their 

masses

Fundamental Constituents underlying atoms, nuclei, and hadrons
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Z Z⇤

` ¯̀ ¯̀`

H

p
4 TeV

p
4 TeV

The Higgs!

1 event in 1010



Home > Event display of a H -> 4mu candidate event

CERN Accelerating science Sign in Directory

 
Small, Medium, Large, Original

higher definition

Small, Medium, Large, Original

ATLAS Photos / ATLAS ATLAS-PHO-COLLAB-2012-008

Event display of a H -> 4mu candidate event

Conditions of Use ATLAS Experiment © 2012 CERN

View as Slideshow

Event display of a H -> 4mu candidate event with m(4l) = 124.1 (125.1) GeV without (with) Z mass constraint. The
masses of the lepton pairs are 86.3 GeV and 31.6 GeV. The event was recorded by ATLAS on 10-Jun-2012, 13:24:31

CEST in run number 204769 as event number 71902630. Zoom into the tracking detector. Muon tracks are
colored red.

Photograph: ATLAS, Collaboration 

Date: 04/07/2012 

Keywords: ATLAS; higgsjuly4; Higgs; muons; Real events 

Note: General Photo 

Similar records

 Record created 2012-07-03, last modified 2013-08-06

Fulltext: 

PNG
higher definition: 

Add to personal basket

Export as BibTeX, MARC, MARCXML, DC,

EndNote, NLM, RefWorks

Information Discussion (0) Files

 

Search Submit Help

CERN Document Server
Personalize

ATLAS-PHO-COLLAB-2012-008 - 2  -  Small, Medium, Large, Original 

higher definition

© CERN

ATLAS pp! H ! µ+µ�µ+µ�X
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QED Lagrangian

Yang Mills Gauge Principle: 
Phase Invariance at Every Point 

of Space and Time 

Scale-Invariant Coupling$
Renormalizable $

Nearly-Conformal$
Landau Pole$

iDµ = i@µ � eAµ

LQED = �1
4
Tr(Fµ⌫Fµ⌫) +

nX̀

`=1

i ̄`Dµ�µ ` +
nX̀

`=1

m` ̄` `

Fµ⌫ = @µAµ � @⌫Aµ
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QCD Lagrangian

Yang Mills Gauge Principle: 
Color Rotation and Phase 

Invariance at Every Point of 
Space and Time 

Scale-Invariant Coupling$
Renormalizable $

Nearly-Conformal$
Asymptotic Freedom$
Color Confinement

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

iDµ = i@µ � gAµ Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]
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QED:   Underlies Atomic Physics, Molecular Physics, 
Chemistry, Electromagnetic Interactions  ...

QCD:   Underlies Hadron Physics, Nuclear Physics,  
Strong Interactions,  Jets

• Feynman diagrams and perturbation theory 

• Bethe Salpeter Equation, Dyson-Schwinger 
Equations  

• Lattice Gauge Theory,  

• Discretized Light-Front Quantization 

• AdS/QCD !

Theoretical Tools



Fundamental Couplings of QCD and QED

gluon self couplings

QED

�

e�

e�

Gµ⌫ = @µAµ � @⌫Aµ � g[Aµ, A⌫ ]

LQCD = �1
4
Tr(Gµ⌫Gµ⌫) +

nfX

f=1

i ̄fDµ�µ f +
nfX

f=1

mf  ̄f f

Gluon vertices Gµ⌫Gµ⌫

QCD

q(r)

q(b)

g(br̄)
 ̄�µAµ ̄

[3X1][3X3][1X3]

 ̄�µAµ ̄

QCD



logarithmic derivative  
of the QCD coupling  is negative 

Coupling becomes weaker at short 
distances = high momentum transfer

⇧(⌅, b⇤)

⇥ = d�s(Q2)
d lnQ2 < 0

u

ū

E⇥ = E � ⇤, ✏q

Q2 = ✏q2 � ⇤2
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⇥(e+e�⇥three jets)
⇥(e+e�⇥two jets)

proportional to �s(s)

Ratio of rate for e+e� ⇥ qq̄g to e+e� ⇥ qq̄

⇥(e+e�⇥three jets)
⇥(e+e�⇥two jets)

proportional to �s(s)

Ratio of rate for e+e� ⇥ qq̄g to e+e� ⇥ qq̄

⇥(e+e�⇥three jets)
⇥(e+e�⇥two jets)

proportional to �s(s)

proportional to �s(Q)

Ratio of rate for e+e� ⇥ qq̄g to e+e� ⇥ qq̄

at Q = ECM = Ee� + Ee+

⇥(e+e�⇥three jets)
⇥(e+e�⇥two jets)

proportional to �s(s)

proportional to �s(Q)

Ratio of rate for e+e� ⇥ qq̄g to e+e� ⇥ qq̄

at Q = ECM = Ee� + Ee+

Verification of Asymptotic Freedom 

�s(Q) ⇤ 1
lnQ

⇥(e+e�⇥three jets)
⇥(e+e�⇥two jets)

proportional to �s(s)

proportional to �s(Q)

Ratio of rate for e+e� ⇥ qq̄g to e+e� ⇥ qq̄

at Q = ECM = Ee� + Ee+

28
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logarithmic derivative  
of the QED coupling is positive 

Coupling becomes  stronger at short 
distances  = high momentum transfer

� =
d↵QED(Q2)

d lnQ2
> 0

X

In QED the β- function  

is positive

Landau Pole!



limNC ⇥ 0 at fixed � = CF�s, n⌥ = nF/CF

e+e� ⇥ p⇤ p

QCD ⇥ Abelian Gauge Theory

limNC ⇥ 0 at fixed � = CF�s, n⌥ = nF/CF

e+e� ⇥ p⇤ p

Huet, sjb

Analytic Feature of SU(Nc) Gauge Theory

All  analyses for Quantum Chromodynamics  
must be applicable to Quantum Electrodynamics

CF =
N2

C � 1
2NC

QCD          QED
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First Evidence for Quark Structure of Matter

Deep Inelastic Electron-Proton Scattering
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γ*
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eʼ
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p
d

g

γ*

g jetu
u

eʼ e

3-20
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8735
A1

p

d
g

γ*

g

jet

u
u

eʼ

e

3-20068735A1

g

Gluonic 
Bremmstrahlung 

!
DGLAP Evolution

But why do quarks not appear in the final state ?	

Why are quarks confined within hadrons?
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• What is the origin of quark confinement? 

• What determines the QCD mass scale? 

• Novel hadronic states: tetraquarks! 

• Novel QCD phenomena 

• Supersymmetry in hadron physics 

• Light-Front Holography 

• New Physics Opportunities at JLab
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Fig. 1. Dirac’s three forms of Hamiltonian dynamics.

2.4. Forms of Hamiltonian dynamics

Obviously, one has many possibilities to parametrize space—time by introducing some general-
ized coordinates xJ (x). But one should exclude all those which are accessible by a Lorentz
transformation. Those are included anyway in a covariant formalism. This limits considerably the
freedom and excludes, for example, almost all rotation angles. Following Dirac [123] there are no
more than three basically different parametrizations. They are illustrated in Fig. 1, and cannot be
mapped on each other by a Lorentz transform. They differ by the hypersphere on which the fields
are initialized, and correspondingly one has different “times”. Each of these space—time parametriz-
ations has thus its own Hamiltonian, and correspondingly Dirac [123] speaks of the three forms of
Hamiltonian dynamics: The instant form is the familiar one, with its hypersphere given by t"0. In
the front form the hypersphere is a tangent plane to the light cone. In the point form the time-like
coordinate is identified with the eigentime of a physical system and the hypersphere has a shape of
a hyperboloid.

Which of the three forms should be prefered? The question is difficult to answer, in fact it is
ill-posed. In principle, all three forms should yield the same physical results, since physics should
not depend on how one parametrizes the space (and the time). If it depends on it, one has made
a mistake. But usually one adjusts parametrization to the nature of the physical problem to
simplify the amount of practical work. Since one knows so little on the typical solutions of a field
theory, it might well be worth the effort to admit also other than the conventional “instant” form.

The bulk of research on field theory implicitly uses the instant form, which we do not even
attempt to summarize. Although it is the conventional choice for quantizing field theory, it has
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Instant Form Front Form 

z0 = 1
⇥QCD

z�

� = 3 + L: conformal dimension of meson
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� = 3 + L: conformal dimension of meson
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Fixed ⇥ = t + z/c

� = ct� z

Evolve in  
light-front time!

Evolve in  
ordinary time

P.A.M Dirac, Rev. Mod. Phys. 
21, 392 (1949)
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Dirac’s Amazing Idea: 
The “Front Form”
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Light-Front Wavefunctions:  rigorous representation of composite 
systems in quantum field theory
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Dirac: Front Form

Causal, Frame-independent, Simple Vacuum, %
Current Matrix Elements are overlap of LFWFS

Invariant under boosts!  Independent of P
μ 
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HQCD
LF |ψ >=M2|ψ >

Dirac’s Front Form: Fixed τ = t+ z/c

Light-Front Wavefunctions

xi =
k+
i

P+

0 < xi < 1

n�

i=1
xi = 1

Remarkable new insights from AdS/CFT,              
the duality between conformal field theory       
and Anti-de Sitter Space 

Invariant under boosts.   Independent of P
μ

Direct connection to QCD Lagrangian

 (xi,
~

k?i,�i)



Light-Front QCD

Eigenvalues and Eigensolutions give Hadronic Spectrum 
and Light-Front wavefunctions

HQCD
LF |�h >= M2

h|�h >

HQCD
LF =

�

i

[
m2 + k2

�
x

]i + Hint
LF

Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
!

in LB-convention.

10. For the instantaneous fermion lines use the factor ¼
"

in Fig. 5 or Fig. 6, or the corresponding
tables in Section 4. For the instantaneous boson lines use the factor ¼

#
.

The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states

!q, qN "" 1

!n
$

%$

!
$!"

b!
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(k
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, #

&
)d!

$"M
(k

&N
, #

&N
)!0" , (3.29)

!q$, qN $"" 1

!n
$

%$
!
$!"

b!
$"

(k$
&
, #$

&
)d!

$"M
(k$

&N
, #$

&N
)!0" , (3.30)
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LQCD � HQCD
LF

Hint
LF : Matrix in Fock Space

Physical gauge: A+ = 0

Exact frame-independent formulation of 
nonperturbative QCD!

Hint
LF

LFWFs: Off-shell in P- and invariant mass
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number of coupled integral eigenvalue equations, 

- - 

where V is the interaction part of HLC. Diagrammatically, V involves completely 

irreducible interactions--i.e. diagrams having no internal propagators-coupling 

Fock states (Fig. 5). These equations determine the hadronic spectrum and 

xJ= 
: 3 II 

- - 
0 
. . . 

. 
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0 l . . f 

- - IL 7 - - . . . . . . 
Figure 5. Coupled eigenvalue equations for the light-cone wa.vefunctious of a 

pion. 

wave functions. Although the potential is essentially trivial, the many channels 

required to describe an hadronic state make these equations very difficult to solve. 

Nevertheless the first attempts at a direct solution have been made. 

The bulk of the probability for a nonrelativistic system is in a single Fock 

state-e.g. (eE> for positronium, or Ibb) for the r meson. For such systems it 

is useful to replace the full set of multi-channel eigenvalue equations by a single 

equation for the dominant wavefunction. To see how this can be done, note that 

the bound state equation, say for positronium, can be rewritten as two equations 

using the projection operator P onto the subspace spanned by eE states, and its 

complement & E 1 - P: 

Hpp IPs)~ + HPQ IPs)~ = h4” IPs)p 

(29) 

H&p [Ps)~ + HQQ jP& = hf” h)g 

where H~Q E PHQ.. ., and lPsjp E P jPs) . . . . Solving the second of these 

equations for IPs)~ and substituting the result into the first equation, we obtain 

a single equation for the ee or valence part of the positronium state: 

Her [Ps)~ = Al2 IPS)P (30) 
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LIGHT-FRONT SCHRODINGER EQUATION

G.P. Lepage, sjbA+ = 0

⇥� ggg � d̄X

⇥� ggg � p̄n̄X

R = �(⇥�d̄X)
�(⇥�p̄n̄X)

R = C

ū(x) ⇥= d̄(x)

s̄(x) ⇥= s(x)



In terms of the hadron four-momentum P =
(P+, P�, ⌦P⇤) with P± = P0 ± P3, the light-
front frame independent Hamiltonian for a
hadronic composite system HQCD

LC = PµPµ =
P�P+� ⌦P2

⇤, has eigenvalues given in terms of
the eigenmass M squared corresponding to
the mass spectrum of the color-singlet states
in QCD,
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Fig. 6. A few selected matrix elements of the QCD front form Hamiltonian H"P
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in LB-convention.
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in Fig. 5 or Fig. 6, or the corresponding
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The light-cone Fock state representation can thus be used advantageously in perturbation
theory. The sum over intermediate Fock states is equivalent to summing all x!-ordered diagrams
and integrating over the transverse momentum and light-cone fractions x. Because of the restric-
tion to positive x, diagrams corresponding to vacuum fluctuations or those containing backward-
moving lines are eliminated.

3.4. Example 1: ¹he qqN -scattering amplitude

The simplest application of the above rules is the calculation of the electron—muon scattering
amplitude to lowest non-trivial order. But the quark—antiquark scattering is only marginally more
difficult. We thus imagine an initial (q, qN )-pair with different flavors fOfM to be scattered off each
other by exchanging a gluon.

Let us treat this problem as a pedagogical example to demonstrate the rules. Rule 1: There are
two time-ordered diagrams associated with this process. In the first one the gluon is emitted by the
quark and absorbed by the antiquark, and in the second it is emitted by the antiquark and
absorbed by the quark. For the first diagram, we assign the momenta required in rule 2 by giving
explicitly the initial and final Fock states
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Fig. 2. The Hamiltonian matrix for a SU(N)-meson. The matrix elements are represented by energy diagrams. Within
each block they are all of the same type: either vertex, fork or seagull diagrams. Zero matrices are denoted by a dot ( ) ).
The single gluon is absent since it cannot be color neutral.

mass or momentum scale Q. The corresponding wavefunction will be indicated by corresponding
upper scripts,

!!""
!#"

(x
#
, k

!
, !

#
) or !!$"

!#"
(x

#
, k

!
, !

#
) . (3.15)

Consider a pion in QCD with momentum P"(P%, P
!
) as an example. It is described by

"# : P$" $
!
!%&
!d[%

!
]"n : x

#
P%, k

!#
#x

#
P
!
, !

#
$!

!#!(x#
, k

!#
, !

#
) , (3.16)

where the sum is over all Fock space sectors of Eq. (3.7). The ability to specify wavefunctions
simultaneously in any frame is a special feature of light-cone quantization. The light-cone
wavefunctions !

!#! do not depend on the total momentum, since x
#
is the longitudinal momentum

fraction carried by the i"# parton and k
!#

is its momentum “transverse” to the direction of the
meson; both of these are frame-independent quantities. They are the probability amplitudes to find
a Fock state of bare particles in the physical pion.

More generally, consider a meson in SU(N). The kernel of the integral equation (3.14) is
illustrated in Fig. 2 in terms of the block matrix &n : x

#
, k

!#
, !

#
"H"n' : x'

#
, k'

!#
, !'

#
$. The structure of this

matrix depends of course on the way one has arranged the Fock space, see Eq. (3.7). Note that most
of the block matrix elements vanish due to the nature of the light-cone interaction as defined in
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Heisenberg Equation

Light-Front QCD DLCQ: Solve QCD(1+1) for any  
quark mass and flavors

Hornbostel, Pauli, sjb

Minkowski space; frame-independent; no fermion doubling; no ghosts
trivial vacuum

Eigenvalues and Eigensolutions give Hadron 
Spectrum and Light-Front wavefunctions



DLCQ: Solve QCD(1+1) for any  quark mass and flavors

Hornbostel, Pauli, sjb
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General remarks about orbital angular mo-
mentum
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Invariant under boosts!  Independent of P
μ 
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Light-Front Wavefunctions:  rigorous representation of composite 
systems in quantum field theory

x =
k+

P+
=

k0 + k3

P 0 + P 3

Process Independent  
Direct Link to QCD Lagrangian!

 LF (xi,
~

k?i,�i)



Quantum Mechanics: Uncertainty in  p, x, spin

Relativistic Quantum Field Theory:  
Uncertainty in particle number n

Positronium n=2

Lamb Shift n=3

Hyperfine splitting n=3

Lamb Shift n=3

Vacuum Polarization n=4
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1
2ge = 1.001 159 652 201(30)

1
2ge = 1.001 159 652 193(10)

ge accurate to 11 figures!
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c

c̄

Fixed LF time

Higher Fock States of the Proton

Fixed LF time: Off-Shell in invariant mass	

Quantum Field Theory: Higher Fock States



|p,Sz>= ∑
n=3

ψn(xi, ~k?i,λi)|n;k?i,λi>|p,Sz>= ∑
n=3

Ψn(xi,~k?i,λi)|n;~k?i,λi>

|p,Sz>= ∑
n=3

Ψn(xi,~k?i,λi)|n;~k?i,λi>

The Light Front Fock State Wavefunctions

Ψn(xi,~k?i,λi)

are boost invariant; they are independent of the hadron’s energy
and momentum Pµ.
The light-cone momentum fraction

xi =
k+
i
p+ =

k0i + kzi
P0+Pz

are boost invariant.
n

∑
i
k+
i = P+,

n

∑
i
xi = 1,
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∑
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sum over states with n=3, 4, ...constituents

Fixed LF time
Intrinsic heavy quarks    s̄(x) ⇤= s(x)

⇥M(x, Q0) ⇥
�

x(1� x)

⇤M(x, k2
⌅)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

ep⇥ e�+n

P�/p ⇤ 30%

Violation of Gottfried sum rule

ū(x) ⌅= d̄(x)

Does not produce (C = �) J/⇥,�

Produces (C = �) J/⇥,�

Same IC mechanism explains A2/3

c(x), b(x) at high x !
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dσ
dt (γd! ∆++∆�)' dσ

dt (γd! pn) at high Q2

dσ
dt (γd! ∆++∆�)' dσ

dt (γd! pn) at high Q2

Lepage, Ji, sjb

• Deuteron six quark wavefunction:!

•  5 color-singlet combinations of 6 color-triplets -- 
one state  is |n  p>!

• Components evolve towards equality at short 
distances!

• Hidden color states dominate deuteron form 
factor and photodisintegration at high 
momentum transfer!

• Predict 

Hidden Color in QCD
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moment vanishes [22]. The light-cone formalism also properly incorporatesWigner boosts.

Thus this model of composite systems can serve as a useful theoretical laboratory to

interrelate hadronic properties and check the consistency of formulae proposed for the

study of hadron substructure.

7. Spin and orbital angular momentum composition of light-cone wavefunctions

In general the light-cone wavefunctions satisfy conservation of the z projection of

angular momentum:

J z =
n∑

i=1
sz
i +

n−1∑

j=1
lzj . (62)

The sum over sz
i represents the contribution of the intrinsic spins of the n Fock state

constituents. The sum over orbital angular momenta lzj = −i
(
k1j

∂
∂k2j

− k2j
∂

∂k1j

)
derives from

the n−1 relative momenta. This excludes the contribution to the orbital angularmomentum
due to the motion of the center of mass, which is not an intrinsic property of the hadron.

We can see how the angular momentum sum rule Eq. (62) is satisfied for the

wavefunctions Eqs. (20) and (23) of the QED model system of two-particle Fock states.

In Table 1 we list the fermion constituent’s light-cone spin projection sz
f = 1

2
λf, the boson

constituent spin projection sz
b = λb, and the relative orbital angular momentum lz for each

contributing configuration of the QED model system wavefunction.

Table 1 is derived by calculating the matrix elements of the light-cone helicity operator

γ +γ 5 [29] and the relative orbital angular momentum operator−i
(
k1 ∂

∂k2
− k2 ∂

∂k1

)
[16,30,

31] in the light-cone representation. Each configuration satisfies the spin sum rule: J z =
sz
f + sz

b + lz.

For a better understanding of Table 1, we look at the non-relativistic and ultra-relativistic

limits. At the non-relativistic limit, the transversal motions of the constituent can be

neglected and we have only the | + 1
2
⟩ → | − 1

2
+ 1⟩ configuration which is the non-

relativistic quantum state for the spin-half system composed of a fermion and a spin-1
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First Evidence for Intrinsic Charm

Measurement of Charm Structure  
Function! 

DGLAP / Photon-Gluon Fusion: factor of 30 too small

factor of 30 !

Two Components (separate evolution):

c(x,Q

2) = c(x, Q

2)
extrinsic

+ c(x, Q

2)
intrinsic

gluon splitting 
(DGLAP)
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5 and 7-Quark Fock-State

• Dominant configuration: same rapidity%

• Heavy quarks have most momentum  %
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numbers%

• Duality with meson-baryon channels%

• strangeness asymmetry at x > 0.1%

• Maximally energy efficient u
d
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Fig. 3. The fi# pair distributions are shown in (a) and (c) for the 

pion and proton projectiles. Similarly, the distributions of J/$‘s 

from the pairs are shown in (b) and (d). Our calculations are 

compared with the n-N data at 150 and 280 GeV/c [ I]. The 

x++, distributions are normalized to the number of pairs from both 

pion beams (a) and the number of pairs from the 400 GeV proton 

measurement (c) The number of single J/e’s is twice the number 

of pairs. 

x+ = ~it,/pt,~a~ in Fig. 3. The +$ pair distributions 

are shown in Fig. 3(a) and 3(c) and the associated 

the single J/I) distributions in pair events are shown 

in Fig. 3(b) and 3(d) . Both are normalized to the 

data with the single J/r/ normalization twice that of 

the pair. 

4. Other tests of the intrinsic heavy quark 

mechanism 

The intrinsic charm model provides a natural expla- 

nation of double J/e hadroproduction and thus gives 

strong phenomenological support for the presence of 

intrinsic heavy quark states in hadrons. While the gen- 

eral agreement with the intrinsic charm model is quite 

good, the excess events at medium xlfi~l suggests that 

intrinsic charm may not be the only @$ QCD produc- 

tion mechanism present or that the model parameteri- 

zation with a constant vertex function is too oversim- 

plified. The x,++,+ distributions can also be affected by 

the A dependence. Additional mechanisms, including 

an update of previous models [ 3-71, will be presented 

in a separate paper [ 81. 

The intrinsic heavy quark model can also be used to 

predict the features of heavier quarkonium hadropro- 

duction, such as YY, Y$, and (6~) (Eb) pairs. Using 

fib = 4.6 GeV, we find that the single Y and YY pair 

x distributions are similar to the equivalent I,& distri- 

butions. The average mass, (MYY), is 21.4 GeV for 

pion projectiles and 21.7 GeV for a proton, a few GeV 

above threshold, 2my = 18.9 GeV. The xy@ pair distri- 

butions are also similar to the +@ distributions but we 

note that (xy) = 0.44 and (xe) = 0.30 from a l&fcCbb) 

configuration and (xy) = 0.39 and (x$) = 0.27 from 

a luudc&) configuration. Here (MY@) = 14.9 GeV 

with a pion projectile and 15.2 GeV with a proton, 

again a few GeV above threshold, my + rn+ = 12.6 

GeV. 

It is clearly important for the double J/+ measure- 

ments to be repeated with higher statistics and also at 

higher energies. The same intrinsic Fock states will 

also lead to the production of multi-charmed baryons 

in the proton fragmentation region. It is also interesting 

to study the correlations of the heavy quarkonium pairs 

to search for possible new four-quark bound states and 

final state interactions generated by multiple gluon ex- 

change [ 71. It has been suggested that such QCD Van 

der Waals interactions could be anomalously strong at 

low relative rapidity [ 22,231. 

There are many ways in which the intrinsic heavy 

quark content of light hadrons can be tested. More 

measurements of the charm and bottom structure func- 

tions at large XF are needed to confirm the EMC data 

[ 151. Charm production in the proton fragmentation 

region in deep inelastic lepton-proton scattering is sen- 

sitive to the hidden charm in the proton wavefunction. 

The presence of intrinsic heavy quarks in the hadron 

wavefunction also enhances heavy flavor production 

in hadronic interactions near threshold. More gener- 

ally, the intrinsic heavy quark model leads to enhanced 

open and hidden heavy quark production and leading 

particle correlations at high XF in hadron collisions 

with a distinctive strongly-shadowed nuclear depen- 

dence characteristic of soft hadronic collisions. 
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[ 121. For soft interactions at momentum scale CL, the 

intrinsic heavy quark cross section is suppressed by a 

resolving factor cc &2/m; [ 131. 

There is substantial circumstantial evidence for the 

existence of intrinsic CL! states in light hadrons. For ex- 

ample, the charm structure function of the proton mea- 

sured by EMC is significantly larger than predicted by 

photon-gluon fusion at large XBj [ 151. Leading charm 

production in TN and hyperon-N collisions also re- 

quires a charm source beyond leading twist [ 13,161. 

The NA3 experiment has also shown that the single 

J/$ cross section at large XF is greater than expected 

from gg and q?j production [ 171. Additionally, intrin- 

sic charm may account for the anomalous longitudi- 

nal polarization of the J/+4 at large XF [ 181 seen in 

?rN -+ J/+X interactions. 

Over a sufficiently short time, the pion can contain 

Fock states of arbitrary complexity. For example, two 

intrinsic CC pairs may appear simultaneously in the 

quantum fluctuations of the projectile wavefunction 

and then, freed in an energetic interaction, coalesce 

to form a pair of I,!J’s. We shall estimate the creation 
-- 

probability of ~~vcccc) Fock states, where nv = &I for 

7~- and nv = uud for proton projectiles, assuming that 

all of the double J/I,~ events arise from these configu- 

rations. We then examine the x+$ and invariant mass 

distributions of the $$ pairs and the x,,+ distribution 

for the single $‘s arising from these Fock states. 

2. Intrinsic charm Fock states 

The probability distribution for a general n-particle 

intrinsic CC Fock state as a function of x and kr is 

written as 

(1) 

where N,, normalizes the Fock state probability. In 

the model, the vertex function in the intrinsic charm 

wavefunction is assumed to be relatively slowly vary- 

ing; the particle distributions are then controlled by the 

light-cone energy denominator and phase space. This 

form for the higher Fock wavefunctions generalizes 

for an arbitrary number of light and heavy quark com- 

ponents. The Fock states containing charmed quarks 

can be materialized by a soft collision in the target 

which brings the state on shell. The distribution of 

produced open and hidden charm states will reflect the 

underlying shape of the Fock state wavefunction. 

The invariant mass of a c.? pair, M,, from such a 

Fock state is 

(2) 

where n = 4 and 5 is the number of partons in the 

lowest lying meson and baryon intrinsic CC Fock states. 

The probability to produce a J/(/I from an intrinsic 

CT state is proportional to the fraction of intrinsic ci? 

production below the Or, threshold. The fraction of 

CC pairs with 2m, < MC? < 2rno is 

The ratio fc~jr is approximately 15% larger than fc~iP 

for 1.2 < m, < 1.8 GeV. However, not all c?‘s pro- 

duced below the DB threshold will produce a final- 

state J/S. We include two suppression factors to es- 

timate J/q5 production, one reflecting the number of 

quarkonium channels available with McT < 2rno and 

one for the c and C to coalesce with each other rather 

than combine with valence quarks to produce open 

charm states. The “channel” suppression factor, s, z 

0.3, is estimated from direct and indirect J/$ produc- 

tion, including x1 and xz radiative and +’ hadronic 

decays. The combinatoric “flavor” suppression factor, 

of, is l/2 for a IEdcC) state and l/4 for a IuudcC) 

state. In Fig. 1 we show the predicted fraction of $‘s 

produced from intrinsic CC pairs, 

f@lh = s,sf.fE/h ) (4) 

as a function of m,. We take m, = I .5 GeV, suggesting 

f ur  M 0.03 and f e j p M 0.014. 

NA3 Data

πA! J/ψJ/ψX

µ2
R = CQ2

⌅(Q2) = C0 + C1�s(µR) + C2�2
s(µR) + · · ·

⇧ = 1
2x�P+

⇥p⌅ µ+µ�p

Oberwölz

All events have xF
⌃⌃ > 0.4 !

⇧(pp⌅ cX) ⇤ 1µb

Excludes PYTHIA 
‘color drag’ model

R. Vogt, sjb 
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Intrinsic Charm Mechanism for Inclusive  
High-XF Higgs Production

H

Higgs can have > 80% of Proton Momentum!

Also: intrinsic strangeness, bottom, top

pp� HXp

p

c
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New production mechanism for Higgs!
AFTER: Higgs production at threshold!



Figure 3: The cross section of inclusive Higgs production in fb, coming

from the nonperturbative intrinsic bottom distribution, at both LHC

(
√

s = 14 TeV, solid curve) and Tevatron (
√

s = 2 TeV, dashed curve)

energies.

that the cross section for inclusive Higgs production from intrinsic bottom is much

higher than the one coming from intrinsic charm. Although it is true that the Higgs-

quark coupling, proportional to mQ, cancels in the cross section with PIQ ∝ 1/m2
Q,

the matrix element between IQ and Higgs wave functions has an additional mQ factor.

This is because the Higgs wave function is very narrow and the overlap of the two

wave functions results in ΨQQ(0) ∝ mQ. Thus, the cross section rises as m2
Q, as we

see in the results.

We can compare our predictions for inclusive Higgs production coming from

IB with our previous ansatz for the Higgs production gluon-gluon fusion process

xdN/dx = 6(1 − x)5. At the maximum (xF = 0.9) of the IB curve we get a value of

roughly 50 fb, while there gluon-gluon gives 0.067 fb. Thus this high-xF region is the

ideal place to look for Higgs production coming from intrinsic heavy quarks.

We obtain essentially the same curves for Tevatron energies (
√

s = 2 TeV) , al-

though the rates are reduced by a factor of approximately 3.

We also show in Fig.4 the results for Higgs production coming from the perturba-

tive charm distribution. The magnitude of the production cross section is considerably

12
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Inclusive Higgs Production⌅ = t + z/c

d⇤
dxF

(pp ⇥ HX)[fb]

fb

⇥q ⇥ ��q

��

⇥

p

Goldhaber, Kopeliovich, Schmidt, sjb

LHC :
�
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Tevatron :
�

s = 2TeV
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Detect 4 muon and 2 muon final states at LHC downstream
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For leptons, such as the electron or neutrino, it is convenient to employ the electron
mass for M , so that the magnetic moment is given in Bohr magnetons.

Now we turn to the evaluation of the helicity-conserving and helicity-flip vector-
current matrix elements in the light-front formalism. In the interaction picture, the
current Jµ(0) is represented as a bilinear product of free fields, so that it has an
elementary coupling to the constituent fields [13, 14, 15]. The Dirac form factor can
then be calculated from the expression

F1(q
2) =

⇧

a

⌥
[dx][d2k⇧]

⇧

j

ej

�
⌅⇥�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇥

a(xi,k⇧i, ⇥i)
 
, (10)

whereas the Pauli and electric dipole form factors are given by

F2(q2)

2M
=

⇧

a

⌥
[dx][d2k⇧]

⇧

j

ej
1

2
⇥ (11)

�
� 1

qL
⌅⇥�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇤

a(xi,k⇧i, ⇥i) +
1

qR
⌅⇤�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇥

a(xi,k⇧i, ⇥i)
 

,

F3(q2)

2M
=

⇧

a

⌥
[dx][d2k⇧]

⇧

j

ej
i

2
⇥ (12)

�
� 1

qL
⌅⇥�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇤

a(xi,k⇧i, ⇥i)�
1

qR
⌅⇤�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇥

a(xi,k⇧i, ⇥i)
 

.

The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is

⌥
[dx] [d2k⇧] ⇤

⇧

�i,ci,fi

⇤
n⌃

i=1

�⌥ ⌥ dxi d2k⇧i

2(2⇤)3

⇥⌅

16⇤3�

�

1�
n⇧

i=1

xi

⇥

�(2)

�
n⇧

i=1

k⇧i

⇥

, (13)

where n denotes the number of constituents in Fock state a and we sum over the
possible {⇥i}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function di�erentiate between the struck and spectator constituents; namely, we
have [13, 15]

k⌅
⇧j = k⇧j + (1� xj)q⇧ (14)

for the struck constituent j and

k⌅
⇧i = k⇧i � xiq⇧ (15)

for each spectator i, where i ⌅= j. Note that because of the frame choice q+ = 0, only
diagonal (n⌅ = n) overlaps of the light-front Fock states appear [14].
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F1(q
2) =

⇧

a

⌥
[dx][d2k⇧]

⇧

j

ej

�
⌅⇥�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇥

a(xi,k⇧i, ⇥i)
 
, (10)

whereas the Pauli and electric dipole form factors are given by

F2(q2)

2M
=

⇧

a

⌥
[dx][d2k⇧]

⇧

j

ej
1

2
⇥ (11)

�
� 1

qL
⌅⇥�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇤

a(xi,k⇧i, ⇥i) +
1

qR
⌅⇤�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇥

a(xi,k⇧i, ⇥i)
 

,

F3(q2)

2M
=

⇧

a

⌥
[dx][d2k⇧]

⇧

j

ej
i

2
⇥ (12)

�
� 1

qL
⌅⇥�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇤

a(xi,k⇧i, ⇥i)�
1

qR
⌅⇤�

a (xi,k
⌅
⇧i, ⇥i) ⌅⇥

a(xi,k⇧i, ⇥i)
 

.

The summations are over all contributing Fock states a and struck constituent charges
ej. Here, as earlier, we refrain from including the constituents’ color and flavor
dependence in the arguments of the light-front wave functions. The phase-space
integration is

⌥
[dx] [d2k⇧] ⇤

⇧

�i,ci,fi

⇤
n⌃

i=1

�⌥ ⌥ dxi d2k⇧i

2(2⇤)3

⇥⌅

16⇤3�

�

1�
n⇧

i=1

xi

⇥

�(2)

�
n⇧

i=1

k⇧i

⇥

, (13)

where n denotes the number of constituents in Fock state a and we sum over the
possible {⇥i}, {ci}, and {fi} in state a. The arguments of the final-state, light-front
wave function di�erentiate between the struck and spectator constituents; namely, we
have [13, 15]

k⌅
⇧j = k⇧j + (1� xj)q⇧ (14)

for the struck constituent j and

k⌅
⇧i = k⇧i � xiq⇧ (15)

for each spectator i, where i ⌅= j. Note that because of the frame choice q+ = 0, only
diagonal (n⌅ = n) overlaps of the light-front Fock states appear [14].
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Drell, sjb
A(⇤,�⌅) = 1

2⇥

�
d�e

i
2⇤�M(�,�⌅)

P+, �P⌅

xiP
+, xi

�P⌅+ �k⌅i

� = Q2

2p·q

x̂, ŷ plane

M2(L) ⇤ L

Must have �↵z = ±1 to have nonzero F2(q2)

-

� = 0

B(0) = 0 Fock-state-by-Fock state

qR,L = qx ± iqy

⇤(x, b⌅)

x

b⌅(GeV)�1

Identify z ⇤ ⇥ =
q

x(1� x) b⌅

Nonzero Proton Anomalous Moment --> 
Nonzero orbital  quark angular momentum

Exact LF Formula for Pauli Form Factor
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 Stan BrodskyNovel World of Hadron Physics
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Calculation of proton form factor in Instant Form 

• Need to boost proton wavefunction: p to p+q. Extremely 
complicated dynamical problem; particle number changes 

• Need to couple to all currents arising from vacuum!! Remain 
even after normal-ordering 

• Instant-form WFs insufficient to calculate form factors 

• Each time-ordered contribution is frame-dependent 

• Divide by disconnected vacuum diagrams

< p + q|Jµ(0)|p >

p + qp p + qp



 Stan BrodskyNovel World of Hadron Physics

Advantages of the Front Form

• Light-Front Time-Ordered Perturbation Theory:  Elegant, Physical 

• Frame-Independent, Causal 

• Few LF Time-Ordered Diagrams (not n!) -- all k+ must be positive 

• Jz conserved at each vertex 

• Cluster Decomposition -- only proof for relativistic theory 

• Automatically normal-ordered; LF Vacuum trivial up to zero modes 

• Renormalization: Alternate Denominator Subtractions: Tested to 
three loops in QED 

• Reproduces Parke-Taylor Rules and Amplitudes  (Stasto-Cruz) 

• Hadronization at the Amplitude Level with Confinement
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 Stan BrodskyNovel World of Hadron Physics

• LF wavefunctions play the role of Schrödinger wavefunctions in 
Atomic Physics 

• LFWFs=Hadron Eigensolutions: Direct Connection to QCD 
Lagrangian 

• Relativistic, frame-independent: no boosts, no disc contraction, 
Melosh built into LF spinors  

• Hadronic observables computed from LFWFs: Form factors, 
Structure Functions, Distribution  Amplitudes, GPDs, TMDs, Weak 
Decays, .... modulo `lensing’ from ISIs, FSIs 

• Cannot compute current matrix elements using instant or point form 
from eigensolutions alone -- need to include vacuum currents! 

•Hadron Physics without LFWFs is like 
Biology without DNA!

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1
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QCD and the LF Hadron Wavefunctions

DVCS, GPDs. TMDs

Baryon Decay

Distribution amplitude	

ERBL Evolution

Heavy Quark Fock States	
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Gluonic properties	

DGLAP
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e– 

quark

Single-spin 
asymmetries

Leading-Twist 
Sivers Effect

~Sp ·~q⇥~pq

 Hwang,  
Schmidt, sjb

Light-Front Wavefunction   
S and P- Waves

QCD S- and P- 
Coulomb Phases 

--Wilson Line

i

Collins, Burkardt!
Ji, Yuan

Analog of QED  
FSIs

Final State Interactions not suppressed! 
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Final-State Interactions Produce  
Pseudo T-Odd  (Sivers Effect)

• Leading-Twist Bjorken Scaling!!

• Requires nonzero orbital angular momentum of quark!

• Arises from the interference of Final-State QCD                                                  
Coulomb phases in S- and P- waves; !

• Wilson line effect  --  gauge independent!

• Relate to the quark contribution to the target proton                                        
anomalous magnetic moment and final-state QCD phases!

• QCD phase at soft scale!!

• New window to QCD coupling and running gluon mass in the IR!

• QED S and P Coulomb phases infinite -- difference of phases finite!

~S ·~p jet⇥~q

~S ·~p jet⇥~qi

11-2001 
8624A06

S

current 
quark jet

final state 
interaction

spectator 
system

proton

e– 

!*

e– 

quark
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 DY               correlation at leading twist from double ISI

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.
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We show that initial-state interactions contribute to the cos 2# distribution in unpolarized Drell-Yan lepton

pair production pp and pp̄→!!!"X , without suppression. The asymmetry is expressed as a product of

chiral-odd distributions h1
!(x1 ,p!

2 )# h̄1
!(x2 ,k!

2 ), where the quark-transversity function h1
!(x ,p!

2 ) is the trans-

verse momentum dependent, light-cone momentum distribution of transversely polarized quarks in an unpo-

larized proton. We compute this !naive" T-odd and chiral-odd distribution function and the resulting cos 2#
asymmetry explicitly in a quark-scalar diquark model for the proton with initial-state gluon interaction. In this

model the function h1
!(x ,p!

2 ) equals the T-odd !chiral-even" Sivers effect function f 1T
! (x ,p!

2 ). This suggests

that the single-spin asymmetries in the semi-inclusive deep inelastic scattering and the Drell-Yan process are

closely related to the cos 2# asymmetry of the unpolarized Drell-Yan process, since all can arise from the same
underlying mechanism. This provides new insight regarding the role of the quark and gluon orbital angular

momentum as well as that of initial- and final-state gluon exchange interactions in hard QCD processes.

DOI: 10.1103/PhysRevD.67.054003 PACS number!s": 12.38.Bx, 13.85.Qk, 13.88.!e

I. INTRODUCTION

Single-spin asymmetries in hadronic reactions have been

among the most challenging phenomena to understand from

basic principles in QCD. Several such asymmetries have

been observed experimentally, and a number of theoretical

mechanisms have been suggested $1–6%. Recently, a new
way of producing single-spin asymmetries in semi-inclusive

deep inelastic scattering !SIDIS" and the Drell-Yan process
has been put forward $7,8%. It was shown that the exchange
of a gluon, viewed as initial- or final-state interactions, could

produce the necessary phase leading to a single transverse

spin asymmetry. The main new feature is that, despite the

presence of an additional gluon, this asymmetry occurs with-

out suppression by a large energy scale appearing in the pro-

cess under consideration. It has been recognized since then

$9% that this mechanism can be viewed as the so-called Sivers
effect $1,10%, which was thought to be forbidden by time-
reversal invariance $4%. Apart from generating Sivers effect

asymmetries, the mechanism offers new insight regarding the
role of orbital angular momentum of quarks in a hadron and

their spin-orbit couplings; in fact, the same S•! L! matrix ele-
ments enter the anomalous magnetic moment of the proton
$7%. The new mechanism for single target-spin asymmetries
in SIDIS necessarily requires noncollinear quarks and glu-
ons, and in the Sivers asymmetry the quarks carry no polar-
ization on average. As such it is very different from mecha-

nisms involving transversity !often denoted by h1 or &q),
which correlates the spin of the transversely polarized hadron
with the transverse polarization of its quarks.
In further contrast, the exchange of a gluon can also lead

to transversity of quarks inside an unpolarized hadron. This
chiral-odd partner of the Sivers effect has been discussed in
Refs. $6,11%, and in this paper we will show explicitly how
initial-state interactions generate this effect. Goldstein and

Gamberg reported recently that h1
!(x ,p!

2 ) is proportional to

f 1T
! (x ,p!

2 ) in the quark-scalar diquark model $12%. We con-
firm this and find that these two distribution functions are in
fact equal in this model. Although this property is not ex-
pected to be satisfied in general, nevertheless, one may ex-
pect these functions to be comparable in magnitude, since
both functions can be generated by the same mechanism. We
investigate the consequences of the present model result for
the unpolarized Drell-Yan process. We obtain an expression
for the cos 2# asymmetry in the lepton pair angular distribu-
tion. Here # is the angle between the lepton plane and the
plane of the incident hadrons in the lepton pair center of
mass. This asymmetry was measured a long time ago $13,14%
and was found to be large. Several theoretical explanations
!some of which will be briefly discussed below" have been
put forward, but we will show that a natural explanation can
come from initial-state interactions which are unsuppressed
by the invariant mass of the lepton pair.

II. THE UNPOLARIZED DRELL-YAN PROCESS

The unpolarized Drell-Yan process cross section has been
measured in pion-nucleon scattering: '"N→(!("X , with
N deuterium or tungsten and a '" beam with energy of 140,
194, 286 GeV $13% and 252 GeV $14%. Conventionally

*Email address: dboer@nat.vu.nl
†Email address: sjbth@slac.stanford.edu
‡Email address: dshwang@sejong.ac.kr

PHYSICAL REVIEW D 67, 054003 !2003"
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ ̸= 0, ν ̸= 0 and
λ ̸= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005

1

4

Nachtmann & Mirkes3 demonstrated that the diagonal elements H11 and
H22 can give rise to a deviation from the Lam-Tung relation:

κ ≡ −
1

4
(1 − λ − 2ν) ≈

〈

H22 − H11

1 + H33

〉

. (5)

A simple assumption for the transverse momentum dependence of (H22 −
H11)/(1 + H33) produced a good fit to the data:

κ = κ0
Q4

T

Q4
T + m4

T

, with κ0 = 0.17 and mT = 1.5 GeV. (6)

Note that for this Ansatz κ approaches a constant value (κ0) for large QT .
In other words, the vacuum effect could persist out to large values of QT .
The Q2 dependence of the vacuum effect is not known, but there is also no
reason to assume that the spin correlation due to the QCD vacuum effect
has to decrease with increasing Q2.

3. Explanation as a hadronic effect

Usually if one assumes that factorization of soft and hard energy scales in
a hard scattering process occurs, one implicitly also assumes factorization
of the spin density matrix. In the present section this will indeed be as-
sumed, but another common assumption will be dropped, namely that of
collinear factorization. It will be investigated what happens if one allows for
transverse momentum dependent parton distributions (TMDs). The spin
density matrix of a noncollinear quark inside an unpolarized hadron can
be nontrivial. In other words, the transverse polarization of a noncollinear
quark inside an unpolarized hadron in principle can have a preferred direc-
tion and the TMD describing that situation is called h⊥

1
10. As pointed out

in Ref.1 nonzero h⊥
1 leads to a deviation from Lam-Tung relation. It offers

a parton model explanation of the DY data (i.e. with λ = 1 and µ = 0):
κ = ν

2 ∝ h⊥
1 (π)h⊥

1 (N) . In this way a good fit to data was obtained
by assuming Gaussian transverse momentum dependence. The reason for
this choice of transverse momentum dependence is that in order to be con-
sistent with the factorization of the cross section in terms of TMDs, the
transverse momentum of partons should not introduce another large scale.
Therefore, explaining the Lam-Tung relation within this framework neces-
sarily implies that κ = ν

2 → 0 for large QT . This offers a possible way to
distinguish between the hadronic effect and the QCD vacuum effect.

It may be good to mention that not only a fit of h⊥
1 to data has been

made (under certain assumptions), also several model calculations of h⊥
1

5

and some of its resulting asymmetries have been performed11,12,13, based
on the recent insight that T-odd TMDs like h⊥

1 arise from the gauge link.
In order to see the parton model expectation κ = ν

2 → 0 at large QT in
the data, one has to keep in mind that the pQCD contributions (that grow
as QT increases) will have to be subtracted. For κ perturbative corrections
arise at order α2

s, but for ν already at order αs. To be specific, at large QT

hard gluon radiation (to first order in αs) gives rise to14

ν(QT ) =
Q2

T

Q2 + 3
2Q2

T

. (7)

Due to this growing large-QT perturbative contribution the fall-off of the
h⊥

1 contribution will not be visible directly from the behavior of ν at large
QT . Therefore, in order to use ν as function of QT to differentiate between
effects, it is necessary to subtract the calculable pQCD contributions. In
Fig. 3 an illustration of this point is given. The dashed curve corresponds

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0 1 2 3 4 5 6 7 8
QT

Figure 3. Impression of possible contributions to ν as function of QT compared to DY
data of NA10 (for Q = 8 GeV). Dashed curve: contribution from perturbative one-gluon
radiation. Dotted curve: contribution from a nonzero h⊥

1 . Solid curve: their sum.

to the contribution of Eq. (7) at Q = 8 GeV. The dotted line is a pos-
sible, parton model level, contribution from h⊥

1 with Gaussian transverse
momentum dependence. Together these contributions yield the solid curve
(although strictly speaking it is not the case that one can simply add them,
since one is a noncollinear parton model contribution expected to be valid
for small QT and the other is an order-αs result within collinear factor-
ization expected to be valid at large QT ). The data are from the NA10
Collaboration for a pion beam energy of 194 GeV/c 5.

The Q2 dependence of the h⊥
1 contribution is not known to date. Only

the effect of resummation of soft gluon radiation on the h⊥
1 contribution to

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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Double Initial-State Interactions  
generate anomalous  

the differential cross section is written as

1

!

d!

d"
!
3

4#

1

$"3

#! 1"$ cos2%"& sin2% cos'"
(

2
sin2% cos 2' " .

)1*

These angular dependencies1 can all be generated by pertur-

bative QCD corrections where, for instance, initial quarks

radiate off high energy gluons into the final state. Such a

perturbative QCD calculation at next-to-leading order leads

to $+1,&+0,(+0 at a very small transverse momentum of

the lepton pair. More generally, the Lam-Tung relation 1

$$$2(!0 ,17- is expected to hold at order .s and the

relation is hardly modified by next-to-leading order (.s
2) per-

turbative QCD corrections ,18-. However, this relation is not
satisfied by the experimental data ,13,14-. The Drell-Yan
data show remarkably large values of ( , reaching values of
about 30% at transverse momenta of the lepton pair between

2 and 3 GeV )for Q2!m/*
2 !(4$12 GeV)2 and extracted in

the Collins-Soper frame ,19- to be discussed below*. These
large values of ( are not compatible with $+1 as also seen
in the data.

A number of explanations have been put forward, such as

a higher twist effect ,20,21-, following the ideas of Berger
and Brodsky ,22-. In Ref. ,20- the higher twist effect is mod-
eled using an asymptotic pion distribution amplitude, and it

appears to fall short in explaining the large values of ( .
In Ref. ,18- factorization-breaking correlations between

the incoming quarks are assumed and modeled in order to

account for the large cos 2' dependence. Here the correla-

tions are both in the transverse momentum and the spin of

the quarks. In Ref. ,6- this idea was applied in a factorized
approach ,23- involving the chiral-odd partner of the Sivers
effect, which is the transverse momentum dependent distri-

bution function called h1
! . From this point of view, the large

cos 2' azimuthal dependence can arise at leading order, i.e.

it is unsuppressed, from a product of two such distribution

functions. It offers a natural explanation for the large cos 2'
azimuthal dependence, but at the same time also for the

small cos' dependence, since chiral-odd functions can only

occur in pairs. The function h1
! is a quark helicity-flip matrix

element and must therefore occur accompanied by another

helicity flip. In the unpolarized Drell-Yan process this can

only be a product of two h1
! functions. Since this implies a

change by two units of angular momentum, it does not con-

tribute to a cos' asymmetry. In the present paper we will

discuss this scenario in terms of initial-state interactions,

which can generate a nonzero function h1
! .

We would also like to point out the experimental obser-

vation that the cos 2' dependence as observed by the NA10

Collaboration does not seem to show a strong dependence on

A, i.e. there was no significant difference between the deute-

rium and tungsten targets. Hence, it is unlikely that the asym-

metry originates from nuclear effects, and we shall assume it

to be associated purely with hadronic effects. We refer to

Ref. ,24- for investigations of nuclear enhancements.
We compute the function h1

!(x ,p!
2 ) and the resulting

cos 2' asymmetry explicitly in a quark-scalar diquark model
for the proton with an initial-state gluon interaction. In this

model h1
!(x ,p!

2 ) equals the T-odd )chiral-even* Sivers effect
function f 1T

! (x ,p!
2 ). Hence, assuming the cos 2' asymmetry

of the unpolarized Drell-Yan process does arise from non-

zero, large h1
! , this asymmetry is expected to be closely

related to the single-spin asymmetries in the SIDIS and the

Drell-Yan process, since each of these effects can arise from

the same underlying mechanism.

The Fermilab Tevatron and BNL Relativistic Heavy Ion

Collider )RHIC* should both be able to investigate azimuthal
asymmetries such as the cos 2' dependence. Since polarized
proton beams are available, RHIC will be able to measure

single-spin asymmetries as well. Unfortunately, one might

expect that the cos 2' dependence in pp→!!̄X )measurable
at RHIC* is smaller than for the process #$N→&"&$X ,

since in the former process there are no valence antiquarks

present. In this sense, the cleanest extraction of h1
! would be

from pp̄→!!̄X .

III. CROSS SECTION CALCULATION

In this section we will assume nonzero h1
! and discuss the

calculation of the leading order unpolarized Drell-Yan cross

section )given in Ref. ,6- with slightly different notation*

d!)h1h2→!!̄X *

d"dx1dx2d
2q!

!
.2

3Q2 0
a , ā

ea
2# A)y *F , f 1 f̄ 1-

"B)y *cos)2'*F $ )2ĥ•p!ĥ•k!

$p!•k!*
h1

!h̄1
!

M 1M 2
% & . )2*

This is expressed in the so-called Collins-Soper frame ,19-,
for which one chooses the following set of normalized vec-

tors )for details see, e.g. ,25-*:

t̂1q/Q , )3*

ẑ1
x1

Q
P̃1$

x2

Q
P̃2, )4*

ĥ1q! /Q!!)q$x1P1$x2P2*/Q! , )5*

where P̃ i1Pi$q/(2xi), Pi are the momenta of the two in-

coming hadrons and q is the four momentum of the virtual

photon or, equivalently, of the lepton pair. This can be related

to standard Sudakov decompositions of these momenta

1We neglect sin' and sin 2' dependencies, since these are of

higher order in .s ,15,16- and are expected to be small.

BOER, BRODSKY, AND HWANG PHYSICAL REVIEW D 67, 054003 )2003*

054003-2

Drell-Yan planar correlations 

Double ISI

Hard gluon radiation

⇥(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)⇥ const

Conformal behavior: Q2F⇤(Q2)⇥ const
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If �s(Q�2) ⇤ constant

⇥(QT )

Q = 8GeV

Conformal behavior: Q4F1(Q2)⇥ const

Conformal behavior: Q2F⇤(Q2)⇥ const
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Q4F1(Q2) ⇤ constant

If �s(Q�2) ⇤ constant

⇤(QT )

Q = 8GeV

⌅N ⇥ µ+µ�X NA10

Conformal behavior: Q4F1(Q2)⇥ const

Conformal behavior: Q2F⌅(Q2)⇥ const
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Q4F1(Q2) ⇤ constant

Violates Lam-Tung relation!

!
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ANOMALOUS DRELL-YAN ASYMMETRY FROM

HADRONIC OR QCD VACUUM EFFECTS ∗

DANIËL BOER

Dept. of Physics and Astronomy,
Vrije Universiteit Amsterdam,

De Boelelaan 1081, 1081 HV Amsterdam,

The Netherlands
E-mail: D.Boer@few.vu.nl

The anomalously large cos(2φ) asymmetry measured in the Drell-Yan process is
discussed. Possible origins of this large deviation from the Lam-Tung relation are
considered with emphasis on the comparison of two particular proposals: one that
suggests it arises from a QCD vacuum effect and one that suggests it is a hadronic
effect. Experimental signatures distinguishing these effects are discussed.

1. Introduction

Azimuthal asymmetries in the unpolarized Drell-Yan (DY) process differ-
ential cross section arise only in the following way

1

σ

dσ

dΩ
∝

(

1 + λ cos2 θ + µ sin 2θ cosφ +
ν

2
sin2 θ cos 2φ

)

, (1)

where φ is the angle between the lepton and hadron planes in the lepton
center of mass frame (see Fig. 3 of Ref.1). In the parton model (order α0

s)
quark-antiquark annihilation yields λ = 1, µ = ν = 0. The leading order
(LO) perturbative QCD corrections (order α1

s) lead to µ ̸= 0, ν ̸= 0 and
λ ̸= 1, such that the so-called Lam-Tung relation 1 − λ − 2ν = 0 holds.
Beyond LO, small deviations from the Lam-Tung relation will arise. If one
defines the quantity κ ≡ − 1

4 (1 − λ − 2ν) as a measure of the deviation

from the Lam-Tung relation, it has been calculated2,3 that at order α2
s κ

is small and negative: −κ <
∼ 0.01, for values of the muon pair’s transverse

momentum QT of up to 3 GeV/c.
Surprisingly, the data is incompatible with the Lam-Tung relation and

with its small order-α2
s modification as well3. These data from CERN’s

NA10 Collaboration4,5 and Fermilab’s E615 Collaboration6 are for π−N →
µ+µ−X , with N = D and W . The π−-beam energies range from 140 GeV

∗Talk presented at the International Workshop on Transverse Polarization Phenomena
in Hard Processes (Transversity 2005), Villa Olmo, Como, Italy, September 7-10, 2005
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Anomalous effect from Double ISI in 
Massive Lepton Production

• Leading Twist, valence quark dominated!

• Violates Lam-Tung Relation!!

• Not obtained from standard PQCD subprocess analysis!

• Normalized to the square of the single spin asymmetry in 
semi-inclusive DIS!

• No polarization required !

• Challenge to standard picture of PQCD Factorization

!
Boer, Hwang, sjb

⇤(QT )

cos 2⇧ correlation

Q = 8GeV

⌅N ⇥ µ+µ�X NA10

Conformal behavior: Q4F1(Q2)⇥ const

Conformal behavior: Q2F⌅(Q2)⇥ const

�s(Q2) ⇤ constant at small Q2.

function. Here we do not intend to give a full demonstration

of this in the Drell-Yan process; a generalized factorization

theorem which includes transverse momentum dependent

functions and initial- or final-state interactions remains to be

proven !27". Instead we present how to arrive at an effective
# from initial- and/or final-state interactions and use this

effective # in Fig. 2. Also, for simplicity we will perform

the explicit calculation in QED. Our analysis can be gener-

alized to the corresponding calculation in QCD. The final-

state interaction from gluon exchange has the strength

!e1e2!/4$→CF%s(&
2), where ei are the photon couplings to

the quark and diquark.

The diagram in Fig. 3 coincides with Fig. 6'a( of Ref. !28"
used for the evaluation of a twist-4 contribution ()1/Q2) to

the unpolarized Drell-Yan cross section. The differences

compared to Ref. !28" are that in the present case there is
nonzero transverse momentum of the partons, and the as-

sumption that the matrix elements are nonvanishing in case

the gluon has a vanishing light-cone momentum fraction 'but
nonzero transverse momentum(. This results in an unsup-
pressed asymmetry which is a function of the transverse mo-

mentum Q! of the lepton pair with respect to the initial

hadrons. If this transverse momentum is integrated over, then

the unsuppressed asymmetry will average to zero and the

diagrams will only contribute at order 1/Q2 as in Ref. !28".

First we will calculate the # matrix to lowest order

'called #L
%*) in the quark-scalar diquark model which was

used in Ref. !7". 'Although the model is based on a point-like
coupling of a scalar diquark to elementary fermions, it can be

softened to simulate a hadronic bound state by differentiating

the wave function formally with respect to a parameter such

as the proton mass.( As indicated earlier, no nonzero f 1T
! and

h1
! will arise from #L

%* . Next we will include an additional

gluon exchange to model the initial- and/or final-state inter-

actions 'relevant for timelike or spacelike processes( to cal-
culate # I/F

%* and do obtain nonzero values for f 1T
! and h1

! .

Our results agree with those recently obtained in the same

model by Goldstein and Gamberg !12". We can then obtain
an expression for the cos 2+ asymmetry from Eq. '16( and
perform a numerical estimation of the asymmetry.

A. ! matrix in the lowest order „!
L

"#…
As indicated in Fig. 4 the initial proton has its momentum

given by P&!(P",P#,P!)!(P
",M 2/P" ,0!), and the fi-

nal diquark P!&!(P!",P!#,P!! )!„P"(1#,),(-2

"r!
2 )/P"(1#,),r!…. We use the convention a$!a0$a3,

a•b!1/2 (a"b#"a#b")#a!•b! .
We will first calculate the # matrix to lowest order (#L

%*)

in the quark-scalar diquark model used in Ref. !7". By cal-
culation of Fig. 4 one readily obtains

#L
%*!ag2" ū'P ,S (

r”"m

r2#m2#*" r”"m

r2#m2
u'P ,S (#%

1

P"'1#,(

!ag2! ū'P ,S ('r”"m ("*!'r”"m (u'P ,S ("%
1

P"'1#,(

%$ 1

,$M 2#
m2"r!

2

,
#

-2"r!
2

1#, % % 2

, '17(

with a constant a!1/!2(2$)3" . The normalization is fixed
by the condition

& d,d2r! f 1', ,r!(!1. '18(

In Eq. '17( we used the relation

FIG. 2. The leading-order contribution to the Drell-Yan process.

FIG. 3. The initial-state interaction contribution to the Drell-Yan

process.

FIG. 4. Diagram which gives the lowest order # 'called #L
%*).
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• Square of Target LFWFs                 Modified by Rescattering: ISI & FSI

• No Wilson Line                             Contains Wilson Line, Phases

• Probability Distributions                 No Probabilistic Interpretation
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Figure 1: Nuclear correction factor R according to Eq. 1
for the differential cross section d2σ/dx dQ2 in charged
current neutrino-Fe scattering at Q2 = 5 GeV2. Results
are shown for the charged current neutrino (solid lines)
and anti-neutrino (dashed lines) scattering from iron.
The upper (lower) pair of curves shows the result of our
analysis with the Base-2 (Base-1) free-proton PDFs.

Figure 2: Predictions (solid and dashed line) for the
structure function ratio F F e

2 /F D
2 using the iron PDFs

extracted from fits to NuTeV neutrino and anti-neutrino
data. The SLAC/NMC parameterization is shown with
the dot-dashed line. The structure function F D

2 in the
denominator has been computed using either the Base-2
(solid line) or the Base-1 (dashed line) PDFs.

(significant) dependence on the energy scale Q, the atomic number A, or the specific observable.
The increasing precision of both the experimental data and the extracted PDFs demand that the
applied nuclear correction factors be equally precise as these contributions play a crucial role in
determining the PDFs. In this study we reexamine the source and size of the nuclear corrections
that enter the PDF global analysis, and quantify the associated uncertainty. Additionally, we
provide the foundation for including the nuclear correction factors as a dynamic component of
the global analysis so that the full correlations between the heavy and light target data can be
exploited.

A recent study 1 analyzed the impact of new data sets from the NuTeV 3, Chorus, and E-
866 Collaborations on the PDFs. This study found that the NuTeV data set (together with the
model used for the nuclear corrections) pulled against several of the other data sets, notably the
E-866, BCDMS and NMC sets. Reducing the nuclear corrections at large values of x reduced
the severity of this pull and resulted in improved χ2 values. These results suggest on a purely
phenomenological level that the appropriate nuclear corrections for ν-DIS may well be smaller
than assumed.

To investigate this question further, we use the high-statistics ν-DIS experiments to perform
a dedicated PDF fit to neutrino–iron data.2 Our methodology for this fit is parallel to that of
the previous global analysis,1 but with the difference we use only Fe data and that no nuclear
corrections are applied to the analyzed data; hence, the resulting PDFs are for a bound proton
in an iron nucleus. Specifically, we determine iron PDFs using the recent NuTeV differential
neutrino (1371 data points) and anti-neutrino (1146 data points) DIS cross section data,3 and
we include NuTeV/CCFR dimuon data (174 points) which are sensitive to the strange quark
content of the nucleon. We impose kinematic cuts of Q2 > 2 GeV and W > 3.5 GeV, and obtain
a good fit with a χ2 of 1.35 per data point.2

2 Nuclear Correction Factors

We now compare our iron PDFs with the free-proton PDFs (appropriately scaled) to infer the
proper heavy target correction which should be applied to relate these quantities. Within the

Extrapolations from  NuTeV

SLAC/NMC data

Q2 = 5 GeV2

Scheinbein, Yu, Keppel, Morfin, Olness, Owens

78



The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2�/Q2 � LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

� Shadowing of the DIS nuclear structure
functions.

Diffraction via Reggeon gives constructive interference!

Anti-shadowing



Origin of Regge Behavior of        Deep 
Inelastic Structure Functions

Antiquark interacts with target nucleus at
energy ŝ ⇤ 1

xbj

Regge contribution: ⇥q̄N ⇥ ŝ�R�1

Shadowing of ⇥q̄M produces shadowing of
nuclear structure function.

c

c̄

g

Antiquark interacts with target nucleus at
energy ŝ ⇤ 1

xbj

Regge contribution: ⇥q̄N ⇥ ŝ�R�1

Shadowing of ⇥q̄M produces shadowing of
nuclear structure function.

c

c̄

g

Antiquark interacts with target nucleus at
energy ŝ ⇤ 1

xbj

Regge contribution: ⇥q̄N ⇥ ŝ�R�1

Shadowing of ⇥q̄M produces shadowing of
nuclear structure function.

c

c̄

g

Antiquark interacts with target nucleus at
energy ŝ ⇤ 1

xbj

Regge contribution: ⇥q̄N ⇥ ŝ�R�1 gives F2N ⇥
x1��R

Nonsinglet Kuti-Weissko� F2p � F2n ⇤
⌅

xbj
at small xbj.

Shadowing of ⇥q̄M produces shadowing of
nuclear structure function.

c

Landshoff, 
Polkinghorne, Short 

Close, Gunion, sjb 

Schmidt, Yang,  Lu, 
sjb 

F2p(x)� F2n(x) / x

1/2
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Exchange
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behavior



Phase of two-step amplitude relative to one
step:

1⇧
2
(1� i)⇥ i = 1⇧

2
(i + 1)

Constructive Interference

Depends on quark flavor!

Thus antishadowing is not universal

Di�erent for couplings of �⇤, Z0, W±

Reggeon 
Exchange

Critical test: Tagged Drell-Yan



The one-step and two-step processes in DIS
on a nucleus.

Coherence at small Bjorken xB :
1/MxB = 2�/Q2 � LA.

If the scattering on nucleon N1 is via pomeron
exchange, the one-step and two-step ampli-
tudes are opposite in phase, thus diminishing
the q flux reaching N2.

� Shadowing of the DIS nuclear structure
functions.

Diffraction via Reggeon gives constructive interference!

Anti-shadowing



Nuclear Antishadowing not universal !

Schmidt, Yang; sjb

Test at JLab — Flavor tagged Structure Functions



Coulomb  potential  Veff ⇥ VC(r) = ��

r
Semiclassical first approximation to QED  

Bohr Spectrum

HQED

[� �2

2mred
+ Ve�(�S,�r)] �(�r) = E �(�r)

[� 1
2mred

d2

dr2
+

1
2mred

⌃(⌃ + 1)
r2

+ Ve�(r, S, ⌃)] �(r) = E �(r)

(H0 + Hint) |� >= E |� > Coupled Fock states

Effective two-particle equation

 Spherical Basis r, �,⇥

Includes Lamb Shift, quantum corrections

QED atoms: positronium 
and muonium

Schrödinger Eq.



Bohr Atom



Need a First Approximation to QCD 
!

 Comparable in simplicity to %
Schrödinger Theory in Atomic Physics

Relativistic, Frame-Independent, Color-Confining
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Goal: an analytic first approximation to QCD

•As Simple as Schrödinger Theory in Atomic Physics 

• Relativistic, Frame-Independent, Color-Confining 

• Confinement in QCD -- What sets the QCD mass scale? 

• QCD Coupling at all scales 

• Hadron Spectroscopy 

• Light-Front Wavefunctions 

• Form Factors, Structure Functions,Hadronic Observables 

• Constituent Counting Rules 

• Hadronization at the Amplitude Level 

• Insights into QCD Condensates 



HQED

Coupled Fock states

Effective two-particle equation

 Azimuthal  Basis

QCD Meson SpectrumHLF
QCD

(H0
LF + HI

LF )|� >= M2|� >

[
�k2
� + m2

x(1� x)
+ V LF

e� ] �LF (x,�k�) = M2 �LF (x,�k�)

�,⇥

�2 = x(1� x)b2
�

Confining AdS/QCD  
potential  

Semiclassical first approximation to QCD  

U(⇣) = 4⇣2 + 22(L + S � 1)



U is the exact QCD potential  
Conjecture: ‘H’-diagrams generate U?

Light-Front Schrödinger Equation
�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF single-variable radial 
equation for QCD & QED

G. de Teramond, sjb 

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

Frame Independent!

U(�, S, L) = ⇥2�2 + ⇥2(L + S � 1/2)
AdS/QCD:



HQCD
LF |ψ >=M2|ψ >

Dirac’s Front Form: Fixed τ = t+ z/c

Bound States in Relativistic Quantum Field Theory: 
Light-Front Wavefunctions

xi =
k+
i

P+

0 < xi < 1

n�

i=1
xi = 1

Remarkable new insights from AdS/CFT,the duality 
between conformal field theory  and Anti-de Sitter Space 

Invariant under boosts.   Independent of P
μ

Direct connection to QCD Lagrangian

 (xi,
~

k?i,�i)

P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u
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Light-Front Holography and Non-Perturbative QCD

Goal:   !
Use AdS/QCD duality to construct !

a first approximation to QCD

Hadron Spectrum   
Light-Front Wavefunctions, 

Form Factors, DVCS, etc

General remarks about orbital angular mo-
mentum

�n(xi, k�i,�i)

�n
i=1(xi

 R�+ b�i) =  R�

xi
 R�+ b�i

�n
i
 b�i =  0�

�n
i xi = 1

in collaboration with  
Guy de Teramond



Applications of AdS/CFT  to QCD  
!
!

in collaboration with Guy de Teramond

Changes in !
physical!

length scale !
mapped to !

evolution in the !
5th dimension z 



AdS/QCD G. F. de Téramond

5-Dimensional
A nti-de Sitter

Spacetime

4-Dimensional
F lat Spacetime

(hologram)

B lack Hole

1-2006
8685 A 7

z0 = 1/ΛQCD

z

Caltech High Energy Seminar, Feb 6, 2006 Page 3
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AdS/QCD G. F. de Téramond

5-Dimensional
A nti-de Sitter

Spacetime

4-Dimensional
F lat Spacetime

(hologram)

B lack Hole

1-2006
8685 A 7

z0 = 1/ΛQCD

z

Caltech High Energy Seminar, Feb 6, 2006 Page 3

Truncated AdS Space



 Stan BrodskyNovel World of Hadron Physics

1 The Holographic Correspondence

• In the “ semi-classical” approximation to QCD with massless quarks and no quantum loops the �

function is zero, and the approximate theory is scale and conformal invariant.

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

ds2 =
R2

z2
(⇥µ⇥dxµdx⇥ � dz2).

• Semi-classical correspondence as a first approximation to QCD (strongly coupled at all scales).

• xµ ⇤ ⇤xµ, z ⇤ ⇤z, maps scale transformations into the holographic coordinate z.

• Different values of z correspond to different scales at which the hadron is examined: AdS boundary at

z ⇤ 0 corresponds to the Q⇤⌅, UV zero separation limit.

• There is a maximum separation of quarks and a maximum value of z at the IR boundary

• Truncated AdS/CFT (Hard-Wall) model: cut-off at z0 = 1/�QCD breaks conformal invariance and

allows the introduction of the QCD scale (Hard-Wall Model) Polchinski and Strassler (2001).

• Smooth cutoff: introduction of a background dilaton field ⌅(z) – usual linear Regge dependence can

be obtained (Soft-Wall Model) Karch, Katz, Son and Stephanov (2006).

Changes in 
physical

length scale 
mapped to 

evolution in the 
5th dimension z 



AdS/QCD G. F. de Téramond

Scale Transformations

• Isomorphism of SO(4, 2) of conformal QCD with the group of isometries of AdS space

SO(1, 5)

ds2 =
R2

z2
(�µ⇥dxµdx⇥ � dz2),

xµ ⇤ ⇥xµ, z ⇤ ⇥z, maps scale transformations into the holographic coordinate z.

• AdS mode in z is the extension of the hadron wf into the fifth dimension.

• Different values of z correspond to different scales at which the hadron is examined.

x2 ⇤ ⇥2x2, z ⇤ ⇥z.

x2 = xµxµ: invariant separation between quarks

• The AdS boundary at z ⇤ 0 correspond to theQ⇤⌅, UV zero separation limit.

Caltech High Energy Seminar, Feb 6, 2006 Page 11

invariant measure

AdS/CFT
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•Soft-wall dilaton profile breaks 
conformal invariance	


•Color Confinement	


•Introduces confinement scale	


•Uses AdS5 as template for conformal 
theory

e'(z) = e+2z2

Dilaton-Modified AdS/QCD



• Nonconformal metric dual to a confining gauge theory

ds2 =
R2

z2
e⇤(z)

�
�µ⇥dxµdx⇥ � dz2

⇥

where ⇤(z) ⇧ 0 at small z for geometries which are

asymptotically AdS5

• Gravitational potential energy for object of mass m

V = mc2�g00 = mc2R
e⇤(z)/2

z

• Consider warp factor exp(±⇥2z2)

• Plus solution: V (z) increases exponentially confining

any object in modified AdS metrics to distances ⌃z⌥ ⌅ 1/⇥

KITPC, Beijing, October 19, 2010 Page 9

Klebanov and Maldacena 

Introduce  “Dilaton" to simulate confinement analytically

e'(z) = e+2z Positive-sign dilaton • de Teramond, sjb



x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

(x(1� x)|b⇤|

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

⌅(x,�b⇤) = ⌅(⇥)

⇤(z)

⇥ =
�

x(1� x)�b2⇤

z

z�

z0 = 1
⇥QCD

�d⇥ np

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

LF(3+1)              AdS5

Light-Front Holography: Unique mapping derived from equality of 
LF and AdS  formula for current matrix elements

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

⌅(x,�b�) =

�
x(1� x)

2⇥�
⇤(�)



soft wall 
confining potential:

Light-Front Holography:  
Map AdS/CFT  to  3+1 LF Theory

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF radial equation!

G. de Teramond, sjb 

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

Frame Independent

�
� d2

d�2
+

1� 4L2

4�2
+ U(�)

⇥
⇥(�) =M2⇥(�)

U(�) = ⇥4�2 + 2⇥2(L + S � 1)



• Obtain spin-J mode �µ1···µJ with all indices along 3+1 coordinates from � by shifting dimensions

�J(z) =
⇧ z

R

⌃�J
�(z)

• Substituting in the AdS scalar wave equation for �
⇤
z2⇧2

z �
�
3�2J � 2⇥2z2

⇥
z ⇧z + z2M2� (µR)2

⌅
�J = 0

• Upon substitution z⌅�

⌅J(�)⇤��3/2+Je⇥2�2/2 �J(�)

we find the LF wave equation

⌥
� d2

d�2
� 1� 4L2

4�2
+ ⇥4�2 + 2⇥2(L + S � 1)

�
⌅µ1···µJ =M2⌅µ1···µJ

with (µR)2 = �(2� J)2 + L2

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 18

General-Spin Hadrons
de Teramond, Dosch, sjb

e'(z) = e+2z2



Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

!
Preserves Conformal Symmetry 

of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique %
Confinement Potential!

!
de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	

without affecting conformal invariance of action!• Fubini, Rabinovici:

e'(z) = e+2z2



• Use AdS/CFT to provide an approximate, 
covariant, and analytic model of hadron structure 
with confinement at large distances, conformal 
behavior at short distances 

• Analogous to Schrödinger Theory for Atomic 
Physics 

• AdS/QCD Light-Front Holography 

• Hadronic Spectra and Light-Front 
Wavefunctions

Goal:

Light-Front Schrödinger Equation
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Light-Front Schrödinger Equation
�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Relativistic LF single-variable radial 
equation for QCD & QED

G. de Teramond, sjb 

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

x (1� x) �b⇥

⇤(x,�b⇥) = ⇤(�)

⇥(z)

� =
�

x(1� x)�b2⇥

z

z�

z0 = 1
⇥QCD

Frame Independent!

109

AdS/QCD:

U(�) = ⇥4�2 + 2⇥2(L + S � 1)
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Fig: Orbital and radial AdS modes in the soft wall model for � = 0.6 GeV .
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Light meson orbital (a) and radial (b) spectrum for � = 0.6 GeV.

Exploring QCD, Cambridge, August 20-24, 2007 Page 26

S = 0 S = 0

Soft Wall 
Model

Pion mass  
automatically zero!

mq = 0

Quark separation 
increases with L

Pion has 
zero mass!

Same slope in n and L!
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M2!GeV2"#b$ n! 3 n! 2 n! 1 n! 0
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M2(n,L, J) = 42(n + L/2 + J/2)



Bosonic Modes and Meson Spectrum
4�2 for �n = 1
4�2 for �L = 1
2�2 for �S = 1

0

0
6-2010
8796A5

1 2 3 4

2

4

6

M2

L

0-+ 1+- 2-+ 4-+3+-
JPC

n=3

π(1800)
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π2(1670)
π(1300)

π

b(1235)

n=2 n=1 n=0

0
09-2009

8796A1
1 2 3 4

2
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M2

L

1-- 2++ 3-- 4++
JPC

n=3

f2(2300)

f2(1950)

a2(1320)

ρ(1700)

ω(1650)

ρ(1450)
ω(1420)

ρ(770)
ω(782)

f2(1270)

ρ3(1690)
ω3(1670)
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f4(2050)

n=2 n=1 n=0

Regge trajectories for the ⇥ (� = 0.6 GeV) and the I =1 ⇤-meson and I =0 ⌅-meson families (� = 0.54 GeV)

KITPC, Beijing, October 19, 2010 Page 20

Same slope in n and L

S = 0 S = 1

M2 = 42(n + J/2 + L/2)! 42(n + L + S/2)

Balmer series of QCD



Orbital and Radial Excitations

de Tèramond, Dosch, sjb

�M2 =
P

i

< m

2
i

xi
>

mq = 46 MeV, ms = 357 MeV

Kaon Spectrum

M2 = 42
�
n +

J + L

2
�

Weisberger



Structure of the Vacuum in Light-Front Dynamics

• Results easily extended to light quarks masses (Ex: K-mesons)
[GdT, S. J. Brodsky and H. G.Dosch, arXiv:1405.2451 [hep-ph]]

• First order perturbation in the quark masses

�M2
= h |

X

a

m2
a

/x
a

| i

• Holographic LFWF with quark masses
[S. J. Brodsky and GdT, arXiv:0802.0514 [hep-ph]

 (x, ⇣) ⇠
p

x(1� x) e�
1
2�

�

m

2
q

x

+
m

2
q

1�x

�

e�
1
2� ⇣

2

• Ex: Description of diffractive vector meson production at HERA
[J. R. Forshaw and R. Sandapen, PRL 109, 081601 (2012)]

• For the K⇤

M2
n,L,S

= M2
K

± + 4�

✓

n +

J + L

2

◆

• Effective quark masses from reduction of higher Fock states as functionals of the valence state:

m
u

= m
d

= 46 MeV, m
s

= 357 MeV

Niccolò Cabeo 2014, Ferrara, May 20, 2012
Page 33

De Teramond, Dosch, sjb



Prediction from AdS/QCD: Meson LFWF

�(x, k�)
0.20.40.60.8
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       “Soft Wall” 
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�(x, k�)(GeV)

de Teramond, 
Cao, sjb⇥M(x, Q0) ⇥

�
x(1� x)

⇤M(x, k2
⇤)

µR

µR = Q

µF = µR

Q/2 < µR < 2Q

µ�

massless quarks

Note coupling  

k2
�, x

Provides Connection of Confinement to Hadron Structure

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

x

1� x

�⇡(x) =
4p
3⇡

f⇡

p
x(1� x)

f⇡ =
p

Pqq̄

p
3

8
 = 92.4 MeV
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Braun, Gardi

Lepage, sjb

Efremov, Radyushkin

Sachrajda, Frishman Lepage, sjb

�M (x,Q) =
� Q

d2�k ⇥qq̄(x,�k�)
P+ = P0 + Pz

Fixed ⌅ = t + z/c

xi = k+

P+ = k0+k3

P0+Pz

⇧(⇤, b�)

⇥ = d�s(Q2)
d lnQ2 < 0

u

x

1� x

k2
� < Q2

�

i

xi = 1

Hadron Distribution Amplitudes

• Fundamental gauge invariant non-perturbative input to hard 
exclusive processes, heavy hadron decays. Defined for Mesons, 
Baryons	


• Evolution Equations from PQCD, OPE	


• Conformal Expansions	


• Compute from valence light-front wavefunction in light-cone 
gauge



  
 

• Relativistic, frame-independent	


• QCD scale appears - unique LF potential	


• Reproduces spectroscopy and dynamics of light-quark hadrons with one 
parameter	


• Zero-mass pion for zero mass quarks!	


• Regge slope same for n and L  -- not usual HO	


• Splitting in L persists to high mass   -- contradicts conventional wisdom 
based on breakdown of chiral symmetry	


• Phenomenology: LFWFs, Form factors, electroproduction	


• Extension to heavy quarks

Remarkable Features of Light-Front Schrödinger Equation

U(⇣) = 4⇣2 + 22(L + S � 1)

117



Prediction from AdS/QCD: Meson LFWF

�(x, k�)
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J. R. Forshaw,  
R. Sandapen

�⇤p! ⇢0p0

�L

�T

⇤M (x, k⇥) =
4⇥

�
�

x(1� x)
e
� k2

⇥
2�2x(1�x)

Prediction from  
Light-Front Holography
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Dressed soft-wall current brings in higher Fock 
states and more vector meson poles
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Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

!
Conformal Symmetry 

of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique %
Confinement Potential!

!
de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	

without affecting conformal invariance of action!

(mq=0)

Single scheme-independent 
fundamental mass scale 
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•Can be used as standard QCD coupling	


•Well measured	


•Asymptotic freedom at large Q2	


•Computable at large Q2 in any pQCD scheme	


•Universal  β0,  β1

Bjorken sum rule defines effective charge ↵g1(Q2)
Z 1

0
dx[gep

1 (x,Q

2)� g

en
1 (x,Q

2)] ⌘ ga

6
[1� ↵g1(Q2)

⇡

]
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5 Non-Perturbative QCD Coupling From LF Holography
With A. Deur and S. J. Brodsky

• Consider five-dim gauge fields propagating in AdS5 space in dilaton background ⇧(z) = ⇤2z2

S = �1
4

�
d4x dz

⇧
g e⇥(z) 1

g2
5

G2

• Flow equation
1

g2
5(z)

= e⇥(z) 1
g2
5(0)

or g2
5(z) = e��2z2

g2
5(0)

where the coupling g5(z) incorporates the non-conformal dynamics of confinement

• YM coupling �s(⇥) = g2
Y M (⇥)/4⌅ is the five dim coupling up to a factor: g5(z)⌅ gY M (⇥)

• Coupling measured at momentum scale Q

�AdS
s (Q) ⇤

� ⇥

0
⇥d⇥J0(⇥Q)�AdS

s (⇥)

• Solution

�AdS
s (Q2) = �AdS

s (0) e�Q2/4�2
.

where the coupling �AdS
s incorporates the non-conformal dynamics of confinement

Hadron 2009, FSU, Tallahassee, December 1, 2009 Page 27

Running Coupling from  Modified AdS/QCD

Deur,  de Teramond, sjb



Running Coupling from Light-Front Holography and AdS/QCD

�AdS
s (Q)/⇥ = e�Q2/4�2

�s(Q)
⇥

Deur,  de Teramond, sjb

 = 0.54 GeV

Analytic, defined at all scales, IR Fixed Point

Q (GeV)

�
s(Q
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Sublimated gluons below 1 GeVAdS/QCD dilaton captures the higher twist corrections to  effective charges for Q < 1 GeV

e' = e+2z2



Perturbative QCD

Holographic QCD

(asymptotic freedom)

Q0

Non−perturbative

0

0.2

0.4

0.6

0.8

1

10
-1

1 10

Q (GeV)

α
g
1
(Q

)/
π

Transition scale Q0

Perturbative QCD!
(Asymptotic Freedom)

↵s
g1

(Q2)
⇡

Nonperturbative QCD !
(Quark Confinement)

All-Scale QCD Coupling

Q2
0 = 1.08± 0.17 GeV 2

⇤MS = 0.351± 0.024 GeV

e�
Q2

42
⇤MS = 0.455± 0.031M⇢

Deur, de Teramond, sjb

Prediction from AdS/QCD:
m⇢ =

p
2

⇤MS = 0.341± 0.024 GeV

Expt:



Match coupling strength  
and derivative

⇤MS = 0.5983 = 0.5983m⇢p
2

= 0.4231m⇢ = 0.328 GeV

Deur,  de Teramond, sjb

�AdS
s (Q)/⇥ = e�Q2/4�2



Deur,  	

de Teramond, sjb

↵AdS
s (Q2) = ↵AdS

s (0)e�Q2/42

AdS/QCD + pQCDO(�3)

⇤MS = 0.5983 = 0.5983m⇢p
2

= 0.4231m⇢ = 0.328 GeV

↵g1(Q
2) at O[↵5

MS
]

Matching analysis:!
Courtoy and Liuti 
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• Sivers Effect in SIDIS, Drell-Yan!

• Double Boer-Mulders Effect in DY!

• Diffractive DIS!

• Heavy Quark Production at Threshold

Applications of Nonperturbative Running 
Coupling from AdS/QCD

All involve gluon exchange at small 
momentum transfer

133



Light-Front Holography  
AdS/QCD 

Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

!
Conformal Symmetry 

of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique %
Confinement Potential!

!
de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	

without affecting conformal invariance of action!



Light-Front Holography  
AdS/QCD 

Soft-Wall  Model 

!
Conformal Symmetry 

of the action  

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Light-Front Schrödinger Equation

de Teramond, Dosch, sjb

Semi-Classical Approximation to QCD 
Relativistic, frame-independent 
Unique color-confining potential 

Zero mass pion for massless quarks 
Regge trajectories with equal slopes in n and L 

Light-Front Wavefunctions



Features of Soft-Wall AdS/QCD

• Single-variable frame-independent radial Schrodinger 
equation 

• Massless pion (mq =0) 

• Regge Trajectories: universal slope in  n and L 

• Valid for all integer J & S.    

• Dimensional Counting Rules for Hard Exclusive Processes 

• Phenomenology: Space-like and Time-like Form Factors 

• LF Holography: LFWFs;  broad distribution amplitude 

• No large Nc limit required 



Uniqueness

• ζ2 confinement potential and dilaton profile unique! 

• Linear Regge trajectories in n and L: same slope! 

• Massless pion in chiral limit!   No vacuum condensate! 

•  Conformally invariant action for massless quarks retained 

despite mass scale 

• Same principle, equation of motion as de Alfaro, Furlan, Fubini, 
Conformal Invariance in Quantum Mechanics Nuovo Cim. A34 (1976) 569 

de Teramond, Dosch, sjb 

U(⇣) = 4⇣2 + 22(L + S � 1) e'(z) = e+2z2

http://inspirehep.net/record/108211


G = uH + vD + wK

G| (⌧) >= i
@

@⌧
| (⌧) >

G = H⌧ =
1
2
�
� d2

dx2
+

g

x2
+

4uw � v2

4
x2

�

Retains conformal invariance of action despite mass scale! 

Identical to LF Hamiltonian with unique potential and dilaton! 

• de Alfaro, Fubini, Furlan

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

U(⇣) = 4⇣2 + 22(L + S � 1)

4uw � v2 = 4 = [M ]4

• Dosch, de Teramond, sjb

New term



 Stan BrodskyNovel World of Hadron Physics

What determines the QCD mass scale ΛQCD? 

• Mass scale does not appear in the QCD Lagrangian (massless 
quarks)	


• Dimensional Transmutation? Requires external constraint 
such as 	


• dAFF: Confinement Scale κ appears spontaneously via the 
Hamiltonian:	


• The confinement scale regulates infrared divergences,  

connects  ΛQCD   to the confinement scale κ	


• Only dimensionless mass ratios (and M times R ) predicted	


• Mass and time units [GeV] and [sec] from physics external to 
QCD	


• New feature: bounded frame-independent relative time 

↵s(MZ)

G = uH + vD + wK 4uw � v2 = 4 = [M ]4
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fixed uniquely: it is, like the original Hamiltonian with unbroken dilatation symmetry,179

a constant of motion (2). This procedure breaks scale invariance by a redefinition of180

the fields and the time parameter (16). The Lagrangian, expressed in terms of the181

original fields Q(t) is unchanged up to a total derivative (2). The dAFF mechanism182

is reminiscent of spontaneous symmetry breaking, however, this is not the case since183

there are no degenerate vacua (14) and thus a massless scalar 0++ state is not required.184

The dAFF mechanism is also di↵erent from usual explicit breaking by just adding a185

term to the Lagrangian (15).186

In their discussion of the evolution operator H⌧ dAFF mention a critical point,187

namely that “the time evolution is quite di↵erent from a stationary one”. By this188

statement they refer to the fact that the variable ⌧ is related to the variable t by189

⌧ =
2p

4uw � v2
arctan

✓
2tw + vp
4uw � v2

◆
, (22)

i.e., ⌧ has only a finite range. Since q2(⌧) vanishes at the borders of this range (See190

(16)), the surface term in (18) vanishes also there. In our approach ⌧ = x+/P+
191

can be interpreted as the LF time di↵erence of the confined q and q̄ in the hadron,192

a quantity which is naturally of finite range and in principle could be measured in193

double-parton scattering processes. It is also interesting to notice that the conformal194

group in one dimension with generators Ht, K and D is locally isomorphic to the195

group SO(2, 1) and thus, a correspondence can be established between the SO(2, 1)196

group of conformal quantum mechanics and the AdS2 space with isometry group197

SO(2, 1) (16).198

Following the work of de Alfaro, Fubini and Furlan in Ref. (2), we have discussed199

in this letter an e↵ective theory which encodes the fundamental conformal symmetry200

of the QCD Lagrangian in the limit of massless quarks. It is an explicit model in201

which the confinement length scale appears in the light-front Hamiltonian from the202

breaking of dilatation invariance, without a↵ecting the conformal invariance of the203

action. In the context of the dual holographic model it shows that the form of the204

dilaton profile is unique, which leads by the mapping to the light-front Hamiltonian205

9

dAFF: New Time Variable

• Identify with difference of LF time Δx+/P+ 

between constituents 

• Finite range  

• Measure in Double Parton Processes



Interpretation of Mass Scale 

• Does not affect conformal symmetry of QCD action!

• Self-consistent regularization of IR divergences!

• Determines all mass and length scales for zero quark mass!

• Compute scheme-dependent           determined in terms of!

• Value of          itself not determined -- place holder!

• Need external constraint such as fπ


⇤MS
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See also Forkel, Beyer, Federico, Klempt
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Figure 8: Orbital and radial baryon excitations for the positive-parity Regge trajectories for the

N (left) and ∆ (right) families for κ = 0.49 − 0.51 GeV.

while maintaining chiral symmetry for the pion [121] in the LF Hamiltonian equations. In

practice, these constraints require a subtraction of −4κ2 from (102). 22

As is the case for the truncated-space model, the value of ν is determined by the short

distance scaling behavior, ν = L+1. Higher-spin fermionic modes Ψµ1···µJ−1/2
, J > 1/2, with

all of its polarization indices along the 3 + 1 coordinates follow by shifting dimensions for

the fields as shown for the case of mesons in Ref. [54] 23. Therefore, as in the meson sector,

the increase in the mass M2 for baryonic states for increased radial and orbital quantum

numbers is ∆n = 4κ2, ∆L = 4κ2 and ∆S = 2κ2, relative to the lowest ground state, the

proton; i.e., the slope of the spectroscopic trajectories in n and L are identical. Thus for the

positive-parity nucleon sector

M2 (+)
n,L,S = 4κ2

(

n+ L+
S

2
+

3

4

)

, (103)

where the internal spin S = 1
2 or 3

2 .

The resulting predictions for the spectroscopy of positive-parity light baryons are shown

in Fig. 8. Only confirmed PDG [49] states are shown. The Roper state N(1440) and

22This subtraction to the mass scale may be understood as the displacement required to describe nucleons

with NC = 3 as a composite system with leading twist 3+L; i.e., a quark-diquark bound state with a twist-2

composite diquark rather than an elementary twist-1 diquark.
23The detailed study of higher fermionic spin wave equations in modified AdS spaces is based on our

collaboration with Hans Guenter Dosch [32]. See also the discussion in Ref. [33].
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the N(1710) are well accounted for in this model as the first and second radial states of

the proton. Likewise, the ∆(1660) corresponds to the first radial state of the ∆(1232) as

shown in in Fig. 8. The model is successful in explaining the parity degeneracy observed in

the light baryon spectrum, such as the L= 2, N(1680)−N(1720) degenerate pair and the

L = 2, ∆(1905), ∆(1910), ∆(1920), ∆(1950) states which are degenerate within error bars.

The parity degeneracy of baryons shown in Fig. 8 is also a property of the hard-wall model

described in the previous section, but in that case the radial states are not well described [51].

In order to have a comprehensive description of the baryon spectrum, we need to extend

(103) to the negative-parity baryon sector. In the case of the hard-wall model, this was

realized by choosing the boundary conditions for the plus or minus components of the AdS

wave function Ψ±. In practice, this amounts to allowing the negative-parity spin baryons to

have a larger spatial extent, a point also raised in [134]. In the soft-wall model there are no

boundary conditions to set in the infrared since the wave function vanishes exponentially for

large values of z. We note, however, that setting boundary conditions on the wave functions,

as done in Sec. 5.1, is equivalent to choosing the branch ν = µR − 1
2 for the negative-

parity spin-12 baryons and ν = µR + 1
2 for the positive parity spin-32 baryons. This gives

a factor 4κ2 between the lower-lying and the higher-lying nucleon trajectories as illustrated

in Fig. 9, where we compare the lower nucleon trajectory corresponding to the J = L + S

spin-12 positive-parity nucleon family with the upper nucleon trajectory corresponding to the

J = L+ S − 1 spin-32 negative-parity nucleons. As is clearly shown in the figure, the gap is

precisely the factor 4κ2.

If we apply the same spin-change rule previously discussed for the positive-parity nucle-

ons, we would expect that the trajectory for the family of spin- 12 negative-parity nucleons

is lower by the factor 2κ2 compared to the spin-32 minus-parity nucleons according to the

spin-change rule previously discussed. Thus the formula for the negative-parity baryons

M2 (−)
n,L,S = 4κ2

(

n+ L+
S

2
+

5

4

)

, (104)

where S = 1
2 or 3

2 . It is important to recall that our formulas for the baryon spectrum are

the result of an analytic inference, rather than formally derived.

The full baryon orbital excitation spectrum listed in Table 2 for n = 0 is shown in Fig.

10. We note that M2 (+)

n,L,S= 3
2

= M2 (−)

n,L,S= 1
2

and consequently the positive and negative-parity ∆

states lie in the same trajectory, consistent with the experimental results. Only the confirmed

PDG [49] states listed in Table 2 are shown. Our results for the ∆ states agree with those

of Ref. [59]. “Chiral partners” as the N(1535) and the N(940) with different orbital angular
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positive parity

negative parity

Baryon Spectroscopy from AdS/QCD and Light-Front Holography

 = 0.49 GeV  = 0.51 GeV
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Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7

42



Table 1: SU(6) classification of confirmed baryons listed by the PDG. The labels S, L
and n refer to the internal spin, orbital angular momentum and radial quantum number

respectively. The �

5
2
�
(1930) does not fit the SU(6) classification since its mass is too low

compared to other members 70-multiplet for n = 0, L = 3.

SU(6) S L n Baryon State

56 1
2 0 0 N 1

2
+
(940)

1
2 0 1 N 1

2
+
(1440)

1
2 0 2 N 1

2
+
(1710)

3
2 0 0 �

3
2
+
(1232)

3
2 0 1 �

3
2
+
(1600)

70 1
2 1 0 N 1

2
�
(1535) N 3

2
�
(1520)

3
2 1 0 N 1

2
�
(1650) N 3

2
�
(1700) N 5

2
�
(1675)

3
2 1 1 N 1

2
�

N 3
2
�
(1875) N 5

2
�

1
2 1 0 �

1
2
�
(1620) �

3
2
�
(1700)

56 1
2 2 0 N 3

2
+
(1720) N 5

2
+
(1680)

1
2 2 1 N 3

2
+
(1900) N 5

2
+

3
2 2 0 �

1
2
+
(1910) �

3
2
+
(1920) �

5
2
+
(1905) �

7
2
+
(1950)

70 1
2 3 0 N 5

2
�

N 7
2
�

3
2 3 0 N 3

2
�

N 5
2
�

N 7
2
�
(2190) N 9

2
�
(2250)

1
2 3 0 �

5
2
�

�

7
2
�

56 1
2 4 0 N 7

2
+

N 9
2
+
(2220)

3
2 4 0 �

5
2
+

�

7
2
+

�

9
2
+

�

11
2

+
(2420)

70 1
2 5 0 N 9

2
�

N 11
2
�

3
2 5 0 N 7

2
�

N 9
2
�

N 11
2
�
(2600) N 13

2
�

1

PDG 2012



Baryon Equation

Meson Equation

x! ⇣

Meson-Baryon Degeneracy for LM=LB+1

S=1/2, P=+

LF Holography

G22

G11

G11

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

both chiralities 

Table 1: Orbital quantum number assignment for the leading-twist parameter ⌫ for baryon
trajectories according to parity P and internal spin S.

S = 1

2

S = 3

2

P = + ⌫ = LB ⌫ = LB + 1

2

P = – ⌫ = LB + 1

2

⌫ = LB + 1

4 Baryon-Meson Supersymmetry185

4.1 The Superpartner of the Nucleon Trajectory186

In the case of baryons, the assignment of the leading-twist parameter ⌫ in Eqs. (9,187

10), as given in Table 1 [12], successfully describes the structure of the light baryon188

orbital and radial excitations 7. The assignment ⌫ = LB for the lowest trajectory, the189

nucleon trajectory, is straightforward and follows from the stability of the ground state190

– the proton – and the mapping to LF quantized QCD.191

The bound-state equations for the nucleon trajectory are (cf. Eqs. (9, 10)):192

✓
� d2

d⇣2

+ �2

B ⇣
2 + 2�B(LB + 1) +

4L2

B � 1

4⇣2

◆
 +

J = M2  +

J , (42)

✓
� d2

d⇣2

+ �2

B ⇣
2 + 2�B LB +

4(LB + 1)2 � 1

4⇣2

◆
 �J = M2  �J . (43)

We will now search for the meson supersymmetric partners of the nucleon trajectory.193

We choose as starting point the leading-twist chirality component  +

J (⇣) which satisfies194

(42). With the identifications x = ⇣, f � 1

2

= LB and � = �B, the plus chirality195

component  +

J (⇣) is also an eigenfunction of G
22

, Eq. (40). On the other hand, the196

supersymmetric partner satisfies G
11

, (39), which should describe a meson trajectory.197

Indeed, the Hamiltonian G
11

with the above mentioned substitutions agrees with the198

bound-state equation (5) for mesons with J = LM , provided we identify f + 1

2

= LM =199

LB +1 and set �M = �B. The lowest state on the mesonic trajectory, with J = LM = 0 –200

the pion– is massless in the chiral limit. It corresponds to a negative value of f , namely201

7The ‘leading-twist’ assignment referred to here is the e↵ective twist of the baryonic quark-cluster
system; it is thus equal to two. This is in distinction to the usual application of twist for hard exclusive
processes which emerges when the baryon cluster is resolved at high momentum transfer and is thus
equal to the total number of components

11

dimensional border ⇣ = 0, is split into a component �J(⇣), describing the behavior in the82

bulk, and a plane wave with an integer J-spinor describing the Minkowski space-time83

behavior (See [14], Sect. 5.1.1):84

�⌫1···⌫J (P, ⇣) = �J(⇣)eiP ·x✏⌫1···⌫J (P ). (1)

The four-momentum squared is the mass squared of the hadron represented by the free85

field, P 2 = M2.86

A Schrödinger-like wave equation [2, 6] follows from the AdS action for arbitrary87

integer spin-J modified by a dilaton term e'(⇣):88

✓
� d2

d⇣2

+
4L2 � 1

4⇣2

+ U(⇣, J)

◆
�J(⇣) = 0, (2)

where we have factored out the scale (1/z)J�3/2 and dilaton factors from the AdS field89

�J by writing �J(z) = (R/z)J�3/2 e�'(z)/2 �J(z). Equation (2) has exactly the form of90

a LF wave equation for massless quarks with a LF e↵ective potential U and LF angular91

momentum L. The latter is related to the total spin J and the product of the AdS mass92

µ with the AdS radius R by93

(µR)2 = L2 � (J � 2)2. (3)

The potential U is related to the dilaton profile by [6, 5]94

U(⇣, J) =
1

2
'00(⇣) +

1

4
'0(⇣)2 +

2J � 3

2⇣
'0(⇣). (4)

The holographic variable ⇣ is identified with the LF invariant invariant transverse sepa-95

ration: ⇣2 = b2

?u(1� u) [1, 2], where b? is the transverse separation of the constituents96

and u is the longitudinal light-front momentum fraction.97

In the case of the quadratic dilaton profile '(⇣) = �M⇣2, the LF e↵ective potential98

is U(⇣, J) = �2

M⇣2 + 2�M(J � 1), and the holographic bound-state wave equation (2)99

can be written as100

✓
� d2

d⇣2

+ �2

M ⇣2 + 2�M (J � 1) +
4⌫2 � 1

4⇣2

◆
�J = M2 �J , (5)

for a meson with total spin J . Near ⇣ = 0 the regular solution behaves as �J(⇣) ⇠ ⇣⌫+

1
2 ,101

corresponding to twist 2 + ⌫. In LFHQCD one thus has ⌫ = LM , where LM is the LF102

5

M2
B(n,LB) = 4�2

B(n + LB + 1)

⌫ = LMM2
M (n,LM , S = 0) = 4�2

M (n + LM )

�2
M = �2

B = 4



Fermionic Modes and Baryon Spectrum
[Hard wall model: GdT and S. J. Brodsky, PRL 94, 201601 (2005)]

[Soft wall model: GdT and S. J. Brodsky, (2005), arXiv:1001.5193]

From Nick Evans

• Nucleon LF modes

⇤+(�)n,L = ⇥2+L

⌅
2n!

(n + L)!
�3/2+Le�⇥2�2/2LL+1

n

�
⇥2�2

⇥

⇤�(�)n,L = ⇥3+L 1⇤
n + L + 2

⌅
2n!

(n + L)!
�5/2+Le�⇥2�2/2LL+2

n

�
⇥2�2

⇥

• Normalization ⇤
d� ⇤2

+(�) =
⇤

d� ⇤2
�(�) = 1

• Eigenvalues

M2
n,L,S=1/2 = 4⇥2 (n + L + 1)

• “Chiral partners”
MN(1535)

MN(940)
=
⇤

2
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Chiral Symmetry 
of Eigenstate!



{Q,S+} = f �B + 2iD, {Q+, S} = f �B � 2iD

B =
1
2
[ +, ] =

1
2
�3

Superconformal Algebra 

{ , +} = 1

 =
1
2
(�1 � i�2),  + =

1
2
(�1 + i�2)

{Q,Q+} = 2H, {S, S+} = 2K

generates conformal algebra

[H,D]= i H, [H, K] =2 i D, [K, D] = - i K

Q =  

+[�@
x

+
f

x

], Q

+ =  [@
x

+
f

x

],
S =  

+
x, S

+ =  x



Superconformal Algebra 

{ , +} = 1

{Q,Q+} = 2H, {S, S+} = 2K

two anti-commuting%
fermionic operators

Q =  

+[�@
x

+ W (x)], Q

+ =  [@
x

+ W (x)],
W (x) =

f

x

S =  

+
x, S

+ =  x

 =
1
2
(�1 � i�2),  + =

1
2
(�1 + i�2) Realization as Pauli Matrices%

Introduce new spinor operators%

Q '
p

H, S '
p

K

Fubini and 
Rabinovici 

de Teramond 
Dosch!

and SJB 
1+1

{Q,Q} = {Q+, Q+} = 0, [Q,H] = [Q+,H] = 0

(Conformal)



Consider Rw = Q + wS;

w: dimensions of mass squared

Superconformal Algebra 

Retains Conformal Invariance of Action

G11 =
�
� @

2
x

+ w

2
x

2 + 2wf � w +
4(f + 1

2 )2 � 1
4x

2

�

New Extended Hamiltonian  G is diagonal:

G = {Rw, R+
w} = 2H + 2w2K + 2wfI � 2wB

G22 =
�
� @

2
x

+ w

2
x

2 + 2wf + w +
4(f � 1

2 )2 � 1
4x

2

�

Fubini and Rabinovici 

2B = �3

Eigenvalue of G: M2
(n,L) = 42

(n + LB + 1)

Baryon Equation

Identify f � 1
2 = LB , w = 2



Baryon Equation

Meson Equation

x! ⇣

Meson-Baryon Degeneracy for LM=LB+1

S=1/2, P=+

LF Holography

G22

G11

G11

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

both chiralities 

Table 1: Orbital quantum number assignment for the leading-twist parameter ⌫ for baryon
trajectories according to parity P and internal spin S.

S = 1

2

S = 3

2

P = + ⌫ = LB ⌫ = LB + 1

2

P = – ⌫ = LB + 1

2

⌫ = LB + 1

4 Baryon-Meson Supersymmetry185

4.1 The Superpartner of the Nucleon Trajectory186

In the case of baryons, the assignment of the leading-twist parameter ⌫ in Eqs. (9,187

10), as given in Table 1 [12], successfully describes the structure of the light baryon188

orbital and radial excitations 7. The assignment ⌫ = LB for the lowest trajectory, the189

nucleon trajectory, is straightforward and follows from the stability of the ground state190

– the proton – and the mapping to LF quantized QCD.191

The bound-state equations for the nucleon trajectory are (cf. Eqs. (9, 10)):192

✓
� d2

d⇣2

+ �2

B ⇣
2 + 2�B(LB + 1) +

4L2

B � 1

4⇣2

◆
 +

J = M2  +

J , (42)

✓
� d2

d⇣2

+ �2

B ⇣
2 + 2�B LB +

4(LB + 1)2 � 1

4⇣2

◆
 �J = M2  �J . (43)

We will now search for the meson supersymmetric partners of the nucleon trajectory.193

We choose as starting point the leading-twist chirality component  +

J (⇣) which satisfies194

(42). With the identifications x = ⇣, f � 1

2

= LB and � = �B, the plus chirality195

component  +

J (⇣) is also an eigenfunction of G
22

, Eq. (40). On the other hand, the196

supersymmetric partner satisfies G
11

, (39), which should describe a meson trajectory.197

Indeed, the Hamiltonian G
11

with the above mentioned substitutions agrees with the198

bound-state equation (5) for mesons with J = LM , provided we identify f + 1

2

= LM =199

LB +1 and set �M = �B. The lowest state on the mesonic trajectory, with J = LM = 0 –200

the pion– is massless in the chiral limit. It corresponds to a negative value of f , namely201

7The ‘leading-twist’ assignment referred to here is the e↵ective twist of the baryonic quark-cluster
system; it is thus equal to two. This is in distinction to the usual application of twist for hard exclusive
processes which emerges when the baryon cluster is resolved at high momentum transfer and is thus
equal to the total number of components
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dimensional border ⇣ = 0, is split into a component �J(⇣), describing the behavior in the82

bulk, and a plane wave with an integer J-spinor describing the Minkowski space-time83

behavior (See [14], Sect. 5.1.1):84

�⌫1···⌫J (P, ⇣) = �J(⇣)eiP ·x✏⌫1···⌫J (P ). (1)

The four-momentum squared is the mass squared of the hadron represented by the free85

field, P 2 = M2.86

A Schrödinger-like wave equation [2, 6] follows from the AdS action for arbitrary87

integer spin-J modified by a dilaton term e'(⇣):88
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where we have factored out the scale (1/z)J�3/2 and dilaton factors from the AdS field89

�J by writing �J(z) = (R/z)J�3/2 e�'(z)/2 �J(z). Equation (2) has exactly the form of90

a LF wave equation for massless quarks with a LF e↵ective potential U and LF angular91

momentum L. The latter is related to the total spin J and the product of the AdS mass92

µ with the AdS radius R by93

(µR)2 = L2 � (J � 2)2. (3)

The potential U is related to the dilaton profile by [6, 5]94
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4
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The holographic variable ⇣ is identified with the LF invariant invariant transverse sepa-95

ration: ⇣2 = b2

?u(1� u) [1, 2], where b? is the transverse separation of the constituents96

and u is the longitudinal light-front momentum fraction.97

In the case of the quadratic dilaton profile '(⇣) = �M⇣2, the LF e↵ective potential98

is U(⇣, J) = �2

M⇣2 + 2�M(J � 1), and the holographic bound-state wave equation (2)99

can be written as100
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Figure 2: Orbital and radial baryon excitation spectrum. Positive-parity spin-12 nucleons (a) and

spectrum gap between the negative-parity spin-32 and the positive-parity spin-12 nucleons families

(b). Minus parity N (c) and plus and minus parity ∆ families (d), for
√
λ = 0.49 GeV (nucleons)

and 0.51 GeV (Deltas).

cluster. The predictions for the daughter trajectories for n = 1, n = 2, · · · are also shown in

this figure. Only confirmed PDG [23] states are shown. The Roper state N(1440) and the

N(1710) are well accounted for as the first and second radial excited states of the proton.

The newly identified state, the N(1900) [23] is depicted here as the first radial excitation of

the N(1720). The model is successful in explaining the parity degeneracy observed in the

light baryon spectrum, such as the L = 2, N(1680)−N(1720) pair in Fig. 2 (a). In Fig. 2

(b) we compare the positive parity spin-12 parent nucleon trajectory with the negative parity

7
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• Boost Invariant 

• Trivial LF vacuum! No condensate, but consistent with GMOR 

• Massless Pion 

• Hadron Eigenstates (even the pion) have LF Fock components of different Lz 

• Proton: equal probability 

!
• Self-Dual Massive Eigenstates: Proton is its own chiral partner. 

• Label State by minimum L as in Atomic Physics 

• Minimum L dominates at short distances                

• AdS/QCD Dictionary: Match to Interpolating Operator Twist at z=0.

Chiral Features of Soft-Wall AdS/
QCD Model

Sz = +1/2, Lz = 0;Sz = �1/2, Lz = +1

No mass -degenerate parity partners!

Jz = +1/2 :< Lz >= 1/2, < Sz
q >= 0



• Compute Dirac proton form factor using SU(6) flavor symmetry

F p
1 (Q2) = R4

⇧
dz

z4
V (Q, z)�2

+(z)

• Nucleon AdS wave function

�+(z) =
�2+L

R2

⌃
2n!

(n + L)!
z7/2+LLL+1

n

�
�2z2

⇥
e��2z2/2

• Normalization (F1
p(0) = 1, V (Q = 0, z) = 1)

R4

⇧
dz

z4
�2

+(z) = 1

• Bulk-to-boundary propagator [Grigoryan and Radyushkin (2007)]

V (Q, z) = �2z2

⇧ 1

0

dx

(1� x)2
x

Q2

42 e��2z2x/(1�x)

• Find

F p
1 (Q2) =

1⇤
1 + Q2

M2
⇢

⌅⇤
1 + Q2

M2
⇢0

⌅

withM⇥
2
n ⇤ 4�2(n + 1/2)
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Using SU(6) flavor symmetry and normalization to static quantities
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 Stan BrodskyNovel World of Hadron Physics
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Nucleon Transition Form Factors

F p

1

N!N

⇤(Q
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Proton transition form factor to the first radial excited state. Data from JLab
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Space-Like Dirac Proton Form Factor

• Consider the spin non-flip form factors

F+(Q2) = g+

⇤
d� J(Q, �)|⇥+(�)|2,

F�(Q2) = g�

⇤
d� J(Q, �)|⇥�(�)|2,

where the effective charges g+ and g� are determined from the spin-flavor structure of the theory.

• Choose the struck quark to have Sz = +1/2. The two AdS solutions ⇥+(�) and ⇥�(�) correspond

to nucleons with Jz = +1/2 and�1/2.

• For SU(6) spin-flavor symmetry

F p
1 (Q2) =

⇤
d� J(Q, �)|⇥+(�)|2,

Fn
1 (Q2) = �1

3

⇤
d� J(Q, �)

�
|⇥+(�)|2 � |⇥�(�)|2

⇥
,

where F p
1 (0) = 1, Fn

1 (0) = 0.

Exploring QCD, Cambridge, August 20-24, 2007 Page 52



 Stan BrodskyNovel World of Hadron Physics

Using SU(6) flavor symmetry and normalization to static quantities
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Predictions for nucleon form factors from AdS/QCD
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Flavor Decomposition of Elastic Nucleon Form Factors

G. D. Cates et al. Phys. Rev. Lett. 106, 252003 (2011)
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Nucleon Transition Form Factors

• Compute spin non-flip EM transition N(940)⇥ N�(1440): �n=0,L=0
+ ⇥ �n=1,L=0

+

• Transition form factor

F1
p
N⇥N�(Q2) = R4

⇧
dz

z4
�n=1,L=0

+ (z)V (Q, z)�n=0,L=0
+ (z)

• Orthonormality of Laguerre functions
�
F1

p
N⇥N�(0) = 0, V (Q = 0, z) = 1

⇥

R4
⇧

dz

z4
�n⇥,L

+ (z)�n,L
+ (z) = �n,n⇥

• Find

F1
p
N⇥N�(Q2) =

2
⌅

2
3

Q2

M2
P⇤

1 + Q2

M2
�

⌅⇤
1 + Q2

M2
�⇥

⌅⇤
1 + Q2

M2

�
⇥⇥

⌅

withM�
2
n ⇥ 4⇥2(n + 1/2)
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de Teramond, sjb

Consistent with counting rule, twist 3



Nucleon Transition Form Factors
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Baryon Equation

Meson Equation

x! ⇣

Meson-Baryon Degeneracy for LM=LB+1

S=1/2, P=+

LF Holography

G22

G11

G11

S=0, I=1 Meson is superpartner of S=1/2, I=1 Baryon

both chiralities 

Table 1: Orbital quantum number assignment for the leading-twist parameter ⌫ for baryon
trajectories according to parity P and internal spin S.

S = 1

2

S = 3

2

P = + ⌫ = LB ⌫ = LB + 1

2

P = – ⌫ = LB + 1

2

⌫ = LB + 1

4 Baryon-Meson Supersymmetry185

4.1 The Superpartner of the Nucleon Trajectory186

In the case of baryons, the assignment of the leading-twist parameter ⌫ in Eqs. (9,187

10), as given in Table 1 [12], successfully describes the structure of the light baryon188

orbital and radial excitations 7. The assignment ⌫ = LB for the lowest trajectory, the189

nucleon trajectory, is straightforward and follows from the stability of the ground state190

– the proton – and the mapping to LF quantized QCD.191

The bound-state equations for the nucleon trajectory are (cf. Eqs. (9, 10)):192

✓
� d2

d⇣2

+ �2

B ⇣
2 + 2�B(LB + 1) +

4L2

B � 1

4⇣2

◆
 +

J = M2  +

J , (42)

✓
� d2

d⇣2

+ �2

B ⇣
2 + 2�B LB +

4(LB + 1)2 � 1

4⇣2

◆
 �J = M2  �J . (43)

We will now search for the meson supersymmetric partners of the nucleon trajectory.193

We choose as starting point the leading-twist chirality component  +

J (⇣) which satisfies194

(42). With the identifications x = ⇣, f � 1

2

= LB and � = �B, the plus chirality195

component  +

J (⇣) is also an eigenfunction of G
22

, Eq. (40). On the other hand, the196

supersymmetric partner satisfies G
11

, (39), which should describe a meson trajectory.197

Indeed, the Hamiltonian G
11

with the above mentioned substitutions agrees with the198

bound-state equation (5) for mesons with J = LM , provided we identify f + 1

2

= LM =199

LB +1 and set �M = �B. The lowest state on the mesonic trajectory, with J = LM = 0 –200

the pion– is massless in the chiral limit. It corresponds to a negative value of f , namely201

7The ‘leading-twist’ assignment referred to here is the e↵ective twist of the baryonic quark-cluster
system; it is thus equal to two. This is in distinction to the usual application of twist for hard exclusive
processes which emerges when the baryon cluster is resolved at high momentum transfer and is thus
equal to the total number of components

11

dimensional border ⇣ = 0, is split into a component �J(⇣), describing the behavior in the82

bulk, and a plane wave with an integer J-spinor describing the Minkowski space-time83

behavior (See [14], Sect. 5.1.1):84

�⌫1···⌫J (P, ⇣) = �J(⇣)eiP ·x✏⌫1···⌫J (P ). (1)

The four-momentum squared is the mass squared of the hadron represented by the free85

field, P 2 = M2.86

A Schrödinger-like wave equation [2, 6] follows from the AdS action for arbitrary87

integer spin-J modified by a dilaton term e'(⇣):88

✓
� d2

d⇣2

+
4L2 � 1

4⇣2

+ U(⇣, J)

◆
�J(⇣) = 0, (2)

where we have factored out the scale (1/z)J�3/2 and dilaton factors from the AdS field89

�J by writing �J(z) = (R/z)J�3/2 e�'(z)/2 �J(z). Equation (2) has exactly the form of90

a LF wave equation for massless quarks with a LF e↵ective potential U and LF angular91

momentum L. The latter is related to the total spin J and the product of the AdS mass92

µ with the AdS radius R by93

(µR)2 = L2 � (J � 2)2. (3)

The potential U is related to the dilaton profile by [6, 5]94

U(⇣, J) =
1

2
'00(⇣) +

1

4
'0(⇣)2 +

2J � 3

2⇣
'0(⇣). (4)

The holographic variable ⇣ is identified with the LF invariant invariant transverse sepa-95

ration: ⇣2 = b2

?u(1� u) [1, 2], where b? is the transverse separation of the constituents96

and u is the longitudinal light-front momentum fraction.97

In the case of the quadratic dilaton profile '(⇣) = �M⇣2, the LF e↵ective potential98

is U(⇣, J) = �2

M⇣2 + 2�M(J � 1), and the holographic bound-state wave equation (2)99

can be written as100

✓
� d2

d⇣2

+ �2

M ⇣2 + 2�M (J � 1) +
4⌫2 � 1

4⇣2

◆
�J = M2 �J , (5)

for a meson with total spin J . Near ⇣ = 0 the regular solution behaves as �J(⇣) ⇠ ⇣⌫+

1
2 ,101

corresponding to twist 2 + ⌫. In LFHQCD one thus has ⌫ = LM , where LM is the LF102

5

M2
B(n,LB) = 4�2

B(n + LB + 1)

⌫ = LMM2
M (n,LM , S = 0) = 4�2

M (n + LM )

�2
M = �2

B = 4
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Figure 2: Supersymmetric meson-nucleon partners: Mesons with S = 0 (red triangles) and
baryons with S = 1

2 (blue squares). The experimental values ofM2 are plotted vs LM = LB+1.

The solid line corresponds to
√
λ = 0.53 GeV. The π has no baryonic partner.

between λB and λM . Only confirmed PDG states are included [23].

4.2 The Mesonic Superpartners of the Delta Trajectory

The essential physics derived from the superconformal connection of nucleons and

mesons follows from the action of the fermion-number changing supercharge operator

Rλ. As we have discussed in the previous section, this operator transforms a baryon with

angular momentum LB into a superpartner meson with angular momentum LM = LB+1

(See Appendix B), a state with the identical eigenvalue – the hadronic mass squared.

We now check if this relation holds empirically for other baryon trajectories.

We first observe that baryons with positive parity and internal spin S = 3
2 , such as

the ∆
3

2

+

(1232), and baryons with with negative parity and internal spin S = 1
2 , such

as the ∆
1
2

−

(1620), lie on the same trajectory; this corresponds to the phenomenological

assignment ν = LB + 1
2 , given in Table 1. From (12) we obtain the spectrum 10

M2(+)

n,LB,S= 3
2

= M2(−)

n,LB,S= 1
2

= 4

(

n+ LB +
3

2

)

λB. (44)

10For the ∆-states this assignment agrees with the results of Ref. [24].

14

Superconformal AdS Light-Front Holographic QCD 
(LFHQCD): 	


Identical meson and baryon spectra!

�M = �B

� = 2

Meson-Baryon !
Mass Degeneracy !

for LM=LB+1
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Features of Supersymmetric Equations

• J =L+S baryon simultaneously satisfies both 
equations of G with L , L+1 for same mass 
eigenvalue!

• Jz =  Lz + 1/2 = (Lz + 1) - 1/2!

• Baryon spin carried by quark orbital angular 
momentum:  <Jz> =Lz+1/2!

• Mass-degenerate meson “superpartner” with 
LM=LB+1.! “Shifted  meson-baryon Duality”

Meson and baryon have same κ!

Sz = ±1/2



e+e�

u

d

�⇤

Timelike Transition Form Factors 

q̄q

F�⇤!H⇤H̄(s)

H⇤ H̄



e+e�

u

d

�⇤

q̄q

F�⇤!H⇤H̄(s)

H⇤ H̄

Prediction from Super Conformal AdS/QCD: 	

Same Form Factors for H= M and H=B if LM=LB+1

Dosch, de Teramond, sjb



Light-Front Holography  

AdS/QCD 
Soft-Wall  Model 

⇥
� d2

d⇣2
+

1� 4L2

4⇣2
+ U(⇣)

⇤
 (⇣) =M2 (⇣)

!
Preserves Conformal Symmetry 

of the action  

U(⇣) = 4⇣2 + 22(L + S � 1)

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Confinement scale:   

Light-Front Schrödinger Equation

�
� d2

d2�
+ V (�)

⇥
=M2⇥(�)

�
� d2

d�2 + V (�)
⇥
=M2⇥(�)

�2 = x(1� x)b2
⇥.

Jz = Sz
p =

⇤n
i=1 Sz

i +
⇤n�1

i=1 ⌥z
i = 1

2

each Fock State

Jz
p = Sz

q + Sz
g + Lz

q + Lz
g = 1

2

Unique %
Confinement Potential!

!
de Tèramond, Dosch, sjb

 ' 0.6 GeV

1/ ' 1/3 fm

• de Alfaro, Fubini, Furlan: Scale can appear in Hamiltonian and EQM 	

without affecting conformal invariance of action!• Fubini, Rabinovici:

e'(z) = e+2z2



Light-Front Holography  
AdS/QCD 

Soft-Wall  Model 

!
Conformal Symmetry 

of the action  

Exploring QCD, Cambridge, August 20-24, 2007 Page 9

Light-Front Schrödinger Equation

de Teramond, Dosch, sjb

Semi-Classical Approximation to QCD 
Relativistic, frame-independent 
Unique color-confining potential 

Zero mass pion for massless quarks 
Regge trajectories with equal slopes in n and L 

Light-Front Wavefunctions
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Some Features of AdS/QCD

• Regge spectroscopy—same slope in n,L for mesons,%

• Chiral features for mq=0: mπ =0, chiral-invariant 
proton%

• Hadronic LFWFs%

• Counting Rules%

• Connection between hadron masses and ⇤MS

Superconformal AdS Light-Front Holographic QCD (LFHQCD) 	

Meson-Baryon Mass Degeneracy for LM=LB+1



Interpretation of Mass Scale 

• Does not affect conformal symmetry of QCD action"

• Self-consistent regularization of IR divergences"

• Determines all mass and length scales for zero quark mass"

• Compute scheme-dependent            determined in terms of"

• Value of          itself not determined -- place holder"

• Need external constraint such as fπ"



⇤MS



• “Zero-Parameter” Model
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New Insights into Hadron Physics

173

• Origin of quark confinement? 

• Determination of the QCD mass scale 

• Novel hadronic states 

• Novel QCD phenomena 

• Supersymmetry in hadron physics 

• Light-Front Holography 

• New Physics Opportunities at JLab



Future Directions for AdS/QCD

• Hadronization at the Amplitude Level 

• Diffractive dissociation of pion and proton to jets 

• Identify the factorization Scale for ERBL, DGLAP evolution: Q0 

• Compute Tetraquark Spectroscopy Sequentially  

• Update SU(6) spin-flavor symmetry 

• Heavy Quark States:  Supersymmetry, not conformal 

• Compute higher Fock states; e.g. Intrinsic Heavy Quarks 

• Nuclear States — Hidden Color 

!
de Tèramond, Dosch, Lorce, sjb



Hadronization at the Amplitude Level
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Construct helicity amplitude using Light-Front Perturbation theory;   coalesce 
quarks via LFWFs
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Off -Shell  T-Matrix
• Quarks and Gluons Off-Shell 

• LFPth:  Minimal Time-Ordering Diagrams-Only positive k+ 

• Jz Conservation at every vertex  

•  Frame-Independent 

• Cluster Decomposition 

• “History”-Numerator structure universal 

• Renormalization- alternate denominators 

• LFWF takes Off-shell to On-shell 
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Four-Quark Hadrons: an Updated Review	

A. ESPOSITOA, L. GUERRIERI, F. PICCININI, A. PILLONI and A.  POLOSA	


arXiv:1411.5997v2 
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Table 3. Summary of quarkonium-like states. For charged states, the C-parity is given for the neutral members of
the corresponding isotriplets.

State M (MeV) � (MeV) JPC Process (mode) Experiment (#�)

X(3823) 3823.1± 1.9 < 24 ??� B ! K(�c1�) Belle23 (4.0)

X(3872) 3871.68± 0.17 < 1.2 1++ B ! K(⇡+⇡�J/ ) Belle24,25 (>10), BABAR26 (8.6)

pp̄ ! (⇡+⇡�J/ ) ... CDF27,28 (11.6), D029 (5.2)

pp ! (⇡+⇡�J/ ) ... LHCb30,31 (np)

B ! K(⇡+⇡�⇡0J/ ) Belle32 (4.3), BABAR33 (4.0)

B ! K(� J/ ) Belle34 (5.5), BABAR35 (3.5)

LHCb36 (> 10)

B ! K(�  (2S)) BABAR35 (3.6), Belle34 (0.2)

LHCb36 (4.4)

B ! K(DD̄⇤) Belle37 (6.4), BABAR38 (4.9)

Zc(3900)+ 3888.7± 3.4 35± 7 1+� Y (4260) ! ⇡�(DD̄⇤)+ BES III39 (np)

Y (4260) ! ⇡�(⇡+J/ ) BES III40 (8), Belle41 (5.2)

CLEO data42 (>5)

Zc(4020)+ 4023.9± 2.4 10± 6 1+� Y (4260) ! ⇡�(⇡+hc) BES III43 (8.9)

Y (4260) ! ⇡�(D⇤D̄⇤)+ BES III44 (10)

Y (3915) 3918.4± 1.9 20± 5 0++ B ! K(!J/ ) Belle45 (8), BABAR33,46 (19)

e+e� ! e+e�(!J/ ) Belle47 (7.7), BABAR48 (7.6)

Z(3930) 3927.2± 2.6 24± 6 2++ e+e� ! e+e�(DD̄) Belle49 (5.3), BABAR50 (5.8)

X(3940) 3942+9

�8

37+27

�17

??+ e+e� ! J/ (DD̄⇤) Belle51,52 (6)

Y (4008) 3891± 42 255± 42 1�� e+e� ! (⇡+⇡�J/ ) Belle41,53 (7.4)

Z(4050)+ 4051+24

�43

82+51

�55

??+ B̄0 ! K�(⇡+�c1) Belle54 (5.0), BABAR55 (1.1)

Y (4140) 4145.6± 3.6 14.3± 5.9 ??+ B+ ! K+(�J/ ) CDF56,57 (5.0), Belle58 (1.9),

LHCb59 (1.4), CMS60 (>5)

D?61 (3.1)

X(4160) 4156+29

�25

139+113

�65

??+ e+e� ! J/ (D⇤D̄⇤) Belle52 (5.5)

Z(4200)+ 4196+35

�30

370+99

�110

1+� B̄0 ! K�(⇡+J/ ) Belle62 (7.2)
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Table 4. (Continued).

State M (MeV) � (MeV) JPC Process (mode) Experiment (#�)

Y (4220) 4196+35

�30

39± 32 1�� e+e� ! (⇡+⇡�hc) BES III data63,64 (4.5)

Y (4230) 4230± 8 38± 12 1�� e+e� ! (�c0!) BES III65 (>9)

Z(4250)+ 4248+185

�45

177+321

�72

??+ B̄0 ! K�(⇡+�c1) Belle54 (5.0), BABAR55 (2.0)

Y (4260) 4250± 9 108± 12 1�� e+e� ! (⇡⇡J/ ) BABAR66,67 (8), CLEO68,69 (11)

Belle41,53 (15), BES III40 (np)

e+e� ! (f
0

(980)J/ ) BABAR67 (np), Belle41 (np)

e+e� ! (⇡�Zc(3900)+) BES III40 (8), Belle41 (5.2)

e+e� ! (�X(3872)) BES III70 (5.3)

Y (4290) 4293± 9 222± 67 1�� e+e� ! (⇡+⇡�hc) BES III data63,64 (np)

X(4350) 4350.6+4.6
�5.1 13+18

�10

0/2?+ e+e� ! e+e�(�J/ ) Belle58 (3.2)

Y (4360) 4354± 11 78± 16 1�� e+e� ! (⇡+⇡� (2S)) Belle71 (8), BABAR72 (np)

Z(4430)+ 4478± 17 180± 31 1+� B̄0 ! K�(⇡+ (2S)) Belle73,74 (6.4), BABAR75 (2.4)

LHCb76 (13.9)

B̄0 ! K�(⇡+J/ ) Belle62 (4.0)

Y (4630) 4634+9

�11

92+41

�32

1�� e+e� ! (⇤+

c ⇤̄�
c ) Belle77 (8.2)

Y (4660) 4665± 10 53± 14 1�� e+e� ! (⇡+⇡� (2S)) Belle71 (5.8), BABAR72 (5)

Zb(10610)+ 10607.2± 2.0 18.4± 2.4 1+� ⌥(5S) ! ⇡(⇡⌥(nS)) Belle78,79 (>10)

⌥(5S) ! ⇡�(⇡+hb(nP )) Belle78 (16)

⌥(5S) ! ⇡�(BB̄⇤)+ Belle80 (8)

Zb(10650)+ 10652.2± 1.5 11.5± 2.2 1+� ⌥(5S) ! ⇡�(⇡+⌥(nS)) Belle78 (>10)

⌥(5S) ! ⇡�(⇡+hb(nP )) Belle78 (16)

⌥(5S) ! ⇡�(B⇤B̄⇤)+ Belle80 (6.8)

Four-Quark Hadrons: an Updated Review	

A. ESPOSITOA, L. GUERRIERI, F. PICCININI, A. PILLONI and A.  POLOSA	


arXiv:1411.5997v2 
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Ruled out by charged Z+c

Tetraquarks
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Fig. 16. Distributions of M
max

(J/ ⇡±), i.e. the larger one of the two M(J/ ⇡±) in each event,
according to BES III40 (left) and Belle41 (right) in the Y (4260) ! J/ ⇡+⇡� decay. The red
solid curve is the result of the fit, the blue dotted curve is the background component, the green
histogram shows the normalized J/ sideband events.

Since some theoretical papers82 cast doubts on the resonant nature of the peak,
in this analysis the complex value of the Z(4430) amplitude has been plotted as
a function of M( (2S)⇡) (Fig. 15). The behaviour is compatible with the Breit-
Wigner prediction with the fitted values of mass and width. The same analysis also
shows hints for a Z(4200) peak with quantum numbers likely JP = 0�, mass and
width M = (4239±18+45

�10

)MeV, � = (220±47+108

�74

)MeV; however, since the Argand
diagram is not conclusive about its resonant nature, LHCb has decided not to claim
the discovery of another state.

Recently, Belle published a similar analysis of the B ! J/ ⇡K decays.62 Hints of
a Z(4430) have been reported in M(J/ ⇡) invariant mass, with branching fraction

B �
B0 ! K+Z(4430)�

�⇥ B �
Z(4430)� ! J/ ⇡�� =

�
5.4+4.0

�1.0
+1.1
�0.6

�⇥ 10�6. (39)

The fact that the Z(4430) is found in di↵erent decay channels gives solidity to its
existence. In the same analysis, Belle claimed the discovery of a broad Z(4200) state
with quantum numbers likely JP = 1+, mass and width M = (4196+31

�29

+17

�13

)MeV,
� = (370+70

�70

+70

�132

)MeV, with a significance of 6.2�, possibly related to the LHCb
hint. The reported branching fraction is

B �
B0 ! K+Z(4200)�

�⇥ B �
Z(4200)� ! J/ ⇡�� =

�
2.2+0.7

�0.5
+1.1
�0.6

�⇥ 10�5. (40)

3.2. Charged states in the 3900-4300MeV region

In March 2013, BES III40 and Belle41 claimed the discovery of a charged resonance
in the channel J/ ⇡+ at a mass of about 3900MeV, i.e. slightly above the DD⇤

threshold (Fig. 16). BES III takes data at the Y (4260) pole, and analyzes the
process e+e� ! Y (4260) ! J/ ⇡+⇡�; Belle instead produces Y (4260) in addition
with initial state radiation (ISR), and analyzes the process e+e� ! Y (4260)�

ISR

!
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product branching fractions

B �
B0 ! K+Z(4430)�

�⇥ B �
Z(4430)� !  (2S)⇡�� = (4.1± 1.0± 1.4)⇥ 10�5.

(35)
BABAR reviewed this analysis,75 by studying in detail the e�ciency corrections

and the shape of the background, relying for the latter on data as much as pos-
sible. Hints of a structure near 4430MeV appeared, even though not statistically
significant, thus leading to a 95% C.L. upper limit on the production branching
fraction

B(B0 ! K+Z(4430)�)⇥ B(Z(4430)� !  (2S)⇡�) < 3.1⇥ 10�5. (36)

After that, Belle revised the analysis73 studying in detail the 3-body Dalitz plot,
and adding all known K⇡ resonances, both with and without a coherent amplitude
for the Z(4430) in the  (2S)⇡� channel. Belle confirmed the presence of a peak
with a statistical significance of 6.4�. The Breit-Wigner parameter from the Dalitz
analysis are M = (4443+15

�12

+19

�13

)MeV and � = (109+86

�43

+74

�56

)MeV. A more recent 4D
re-analysis by Belle74 shows that the JP = 1+ hypothesis is favored, modifying
mass and width values to M = 4485+22+28

�22�11

MeV and � = 200+41+26

�46�35

MeV (Fig. 14).
The production branching fraction is instead

B �
B0 ! K+Z(4430)�

�⇥B �
Z(4430)� !  (2S)⇡�� =

�
6.0+1.7

�2.0
+2.5
�1.4

�⇥ 10�5. (37)

LHCb confirmed this last result with a similar 4D analysis of the same decay
channel. The Z(4430)+ is confirmed with a significance of 13.9� at least, and the
fitted mass and width are M = (4475 ± 7+15

�25

)MeV and � = (172 ± 13+37

�34

)MeV.
Also the JP = 1+ signature is confirmed with high significance. The average à la

PDG of Belle’s and LHCb’s mass and width are:

M = (4478± 17)MeV, � = (180± 31)MeV. (38)
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Fig. 15. Invariant mass distributions in  (2S)⇡� channel (left) and resonant behaviour (right)
according to LHCb.76 In the left panel, the red solid (brown dashed) curve shows the fit with
(without) the additional Z(4430) resonance. In the right panel, the complex value of the Z(4430)
fitted amplitude for six bins of M( (2S)⇡) is shown. The red curve is the prediction from the
Breit-Wigner formula with a resonance mass (width) of 4475 (172)MeV.
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 Stan BrodskyNovel World of Hadron Physics

• QCD condensates are vacuum effects  

• QCD gives 1042 to the cosmological constant 

• QCD Confinement can only be understood in LGTh 

• Anti-Shadowing is Universal 

• ISI and FSI are higher twist effects and universal 

• High transverse momentum hadrons arise only from jet 
fragmentation  -- baryon anomaly! 

• Heavy quarks only from gluon splitting 

• Renormalization scale in PQCD cannot be fixed

QCD Myths
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