High-precision measurements of the Rb87 D-line tune-out wavelength

Adam Fallon

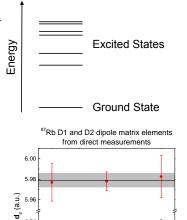
March 28, 2016

Outline

- Motivation
 - Dipole matrix elements
 - Atomic parity violation
- Stark effect and "tune-out" wavelengths
 - Polarization control
 - Results
- Vector polarizability

Dipole Matrix Elements

- Excited state energies known very well from spectroscopy $(E_f E_i)$
- Need dipole matrix elements also
 - $|d_{if}| = \langle n' P_{J'} || \mathbf{d} || n S_J \rangle$
 - Lifetime
 - Oscillator Strength
 - Einstein A coefficient
- Difficult to measure directly in general
 - 0.2% error for lowest lying
 - Lifetime measurements
 - Better than typical
- Good enough for many applications



4.24

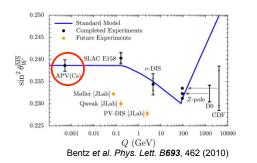
4.22

Dipole Matrix Elements

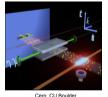
- Even more precision needed in some areas
- Atomic parity violation
- Atomic clocks
 - Precision limited by blackbody shift from environment
- Theoretical benchmark
 - Computational techniques
 - Phenomenological input
- Feshbach resonances

Atomic Parity Violation

- Tabletop atomic experiment to test fundamental particle physics theory
 - Weak charge Q_W
- Competitive precision in low energy test of standard model



High Energies



Atomic Parity Violation

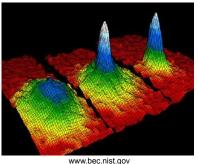
- From usual selection rules, $S \to P$ allowed, $S \to S$ forbidden
- APV Nonzero $S \to S$ transition probability
- Very small effect
 - \bullet 4.5 a.u. vs. 10^{-11} a.u.!
- \blacksquare Cs APV experiment (1997)
 - Achieved 0.35% experimental uncertainty
 - To convert to measurement of weak charge, need dipole matrix elements
 - $Q_W^{SM} = -73.23(2)$
 - $Q_W^{Atomic} = -72.58(29)_{Exp}(32)_{Theory}$
 - 0.4% theoretical uncertainty from conversion
- No reason for new experiments until theory catches up

Atomic Parity Violation

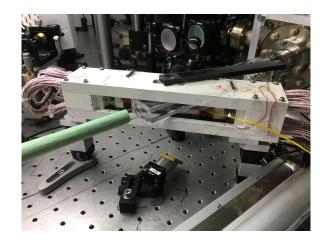
- Precise knowledge of alkali atom matrix elements $|d_{if}|$ needed in analysis
- Infinite number of such matrix elements all contribute
- Direct measurements not possible in general to high enough precision
 - Lowest known through lifetime measurements
- Beginning to develop framework to reduce uncertainties through measurements of tune-out wavelengths

Bose-Einstein Condensate

- Create BEC in standard fashion
 - MOT
 - Magnetic quadrupole trap
 - rf evaporation
- Load atoms into "wave-guide"
 - $\mathbf{z} = 2\pi \times (5.1, 1.1, 3.2) \text{ Hz}$
 - Interferometer along weakest direction

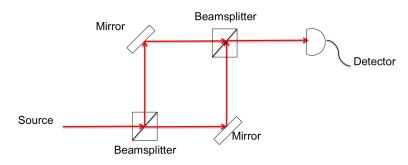


Bose-Einstein Condensate



 $2\pi \times (5.1, 1.1, 3.2) \text{ Hz}$

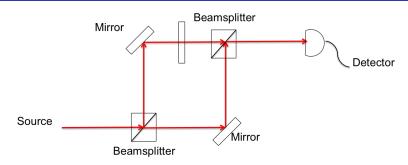
Interferometry



- Split source and propagate along two paths
- Difference in phase at output constructive vs. destructive interference

$$\vec{E} = \vec{E_0}e^{i\phi} = \vec{E_0}e^{i(\omega t - kz)}$$

Interferometry



- Split source and propagate along two paths
- Difference in phase at output constructive vs. destructive interference

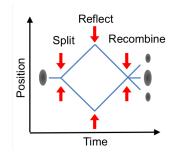
$$\vec{E} = \vec{E_0}e^{i\phi} = \vec{E_0}e^{i(\omega t - kz)}$$

■ Light interferometers measure time (optical path length) differences

Atom Interferometry

$$\phi = \frac{S}{\hbar} = \frac{\int E dt}{\hbar}$$

- Analogous to light interferometer
- Atoms sensitive to many more phenomena electromagnetic fields, gravity, accelerations, inter-atomic interactions, etc.
- Colder (slower) atoms = longer interrogation times

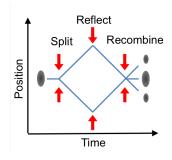


BEC before split

Atom Interferometry

$$\phi = \frac{S}{\hbar} = \frac{\int E dt}{\hbar}$$

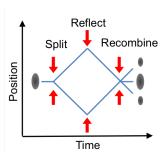
- Analogous to light interferometer
- Atoms sensitive to many more phenomena electromagnetic fields, gravity, accelerations, inter-atomic interactions, etc.
- Colder (slower) atoms = longer interrogation times



Atom Interferometry

$$\phi = \frac{S}{\hbar} = \frac{\int E dt}{\hbar}$$

- Analogous to light interferometer
- Atoms sensitive to many more phenomena electromagnetic fields, gravity, accelerations, inter-atomic interactions, etc.
- Colder (slower) atoms = longer interrogation times



After recombination

■ Phase determined by ratio of atoms at rest to total, N_0/N_{p}

Stark Effect

$$U = -\frac{1}{2}\alpha \langle \mathcal{E}^2 \rangle = -\frac{\alpha I}{2\epsilon_0 c}$$

- Energy shift due to applied electric field
 - Static or AC
 - Dynamic polarizability
- Difficult to calibrate intensity
 - Atoms inside vacuum chamber
- Want polarizability α
 - Dependence on dipole matrix elements

Polarizability

$$\alpha_i(\omega) = \frac{1}{\hbar} \sum_f \frac{2\omega_{if}}{\omega_{if}^2 - \omega^2} |d_{if}|^2 + \alpha_c + \alpha_{cv}$$

- $\alpha_c = \text{core contribution}$
- $\alpha_{cv} = \text{core-valence correction}$
- \blacksquare 5P states dominate

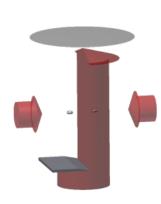
$$\alpha(\omega) = \frac{2}{\hbar} \frac{\omega_{5P_{1/2}}}{\omega_{1/2}^2 - \omega^2} |d_{1/2}|^2 + \frac{2}{\hbar} \frac{\omega_{5P_{3/2}}}{\omega_{3/2}^2 - \omega^2} |d_{3/2}|^2 + \alpha_{tail} + \alpha_c + \alpha_{cv}$$

- \bullet α_{tail} = valence contributions > 5P
- Difficult to calculate
 - Infinite number of matrix elements
 - \blacksquare Calculated up to n=12
 - Uncertainty in tail same scale as value

Previous Meaurement (2008)

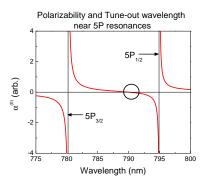
$$U = -\frac{1}{2}\alpha \langle \mathcal{E}^2 \rangle = -\frac{\alpha I}{2\epsilon_0 c}$$

- Measured by former student Ben Deissler (PhD 2008)
 - $\alpha(780.23 \text{ nm}) = \frac{4\pi\epsilon_0}{10^{25}} \text{ x } (8.37 \pm 0.24) \text{ m}^3$
 - $\alpha(808.37 \text{ nm}) = \frac{4\pi\epsilon_0}{10^{28}} \text{ x } (9.48 \pm 0.25) \text{ m}^3$
- Deviations from predicted values about 3%
 - Attributed primarily to intensity calibration
- Need way to reduce dependence on intensity calibration



$$\alpha_i(\omega) = \frac{1}{\hbar} \sum_f \frac{2\omega_{if}}{\omega_{if}^2 - \omega^2} |d_{if}|^2 + \alpha_c + \alpha_{cv}$$

- Zero in polarizability between resonances
- Extract info on $|d_{if}|$, α_c , α_{cv}
 - Mainly depends on $R = \frac{|d_{3/2}|^2}{|d_{1/2}|^2}$
- Sensitive to polarization of light
 - Switch to spherical tensor form



Spherical tensors

Scalar Vector Tensor
$$U = -\frac{\langle \mathcal{E}^2 \rangle}{2} \left\{ \alpha^{(0)} - \frac{1}{2} \mathcal{V} \cos \chi \, \alpha^{(1)} + \left[\frac{3 \cos^2(\xi) - 1}{2} \right] \alpha^{(2)} \right\}$$

- Dependence on polarization more obvious
- lacksquare $\mathcal V$ fourth Stoke's parameter
 - \blacksquare ±1 for σ^{\pm}
- $\cos \chi = \hat{k} \cdot \hat{b}$
- $\cos \xi = \hat{\epsilon} \cdot \hat{b}$
 - Angle of linear polarization w.r.t. magnetic field
- Near tune-out wavelength
 - $\alpha^{(1)} = 25000$ au
 - $d\alpha^{(0)}/d\lambda = -2500 \text{ au/nm}$
 - Want sub-picometer uncertainty

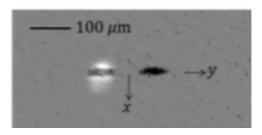
Spherical tensors

$$U = -\frac{\langle \mathcal{E}^2 \rangle}{2} \left\{ \alpha^{(0)} - \frac{1}{2} \mathcal{V} \cos \chi \, \alpha^{(1)} + \left[\frac{3 \cos^2(\xi) - 1}{2} \right] \alpha^{(2)} \right\}$$

- Need to control $|\mathcal{V}\cos\chi|$ to better than 10^{-5}
 - Better than typically maintained through vacuum window
 - Stress-induced birefringence
- Remove tensor polarizability later to report zero in $\alpha^{(0)}$
 - $\lambda^{(0)}$
- Use atoms to linearize light

Stark Interferometer

- Allow one packet of interferometer to pass through Stark beam (twice)
- Vary intensity to measure rate of phase buildup
- Make measurements at different wavelengths around tune-out



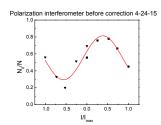
Polarization Control

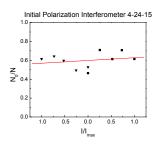
$$U = -\frac{\langle \mathcal{E}^2 \rangle}{2} \left\{ \alpha^{(0)} - \frac{1}{2} \mathcal{V} \cos \chi \, \alpha^{(1)} + \left[\frac{3 \cos^2(\xi) - 1}{2} \right] \alpha^{(2)} \right\}$$

- Atoms held in Time Orbiting Potential (TOP) magnetic trap
 - Magnetic bias rotates at 12 kHz
 - Stark light aligned in plane of rotation
- Constant reversal of σ^+ and σ^-
 - $(\cos \chi) = 0$
- Time averaging alone not enough

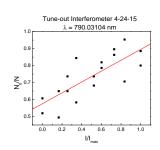
Polarization Control

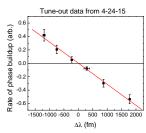
- Also want $\langle \mathcal{V} \rangle = 0$
- Interferometer run with Stark light pulsing
 - On for half of rotating bias period
- Phase buildup asymmetric when imbalance of σ^+ and σ^-
- Adjust external waveplate to correct imbalance
 - QWP at 780 nm
 - Need 0.1° precision $V \approx 2 \times 10^{-3}$
- Properly set when phase symmetric and small





- A total of 21 tune-out measurements made over 2 months
- Upper figure 1 hour
 - One point on lower figure
- Lower figure 1 day
- Check polarization before and after α measurement to assess drift
 - Typical drift over day 60 fm
 - Likely due to thermal fluctuations
 - Taken as polarization uncertainty for measurement





Tensor Polarizability

$$U = -\frac{\langle \mathcal{E}^2 \rangle}{2} \left\{ \alpha^{(0)} + \left[\frac{3\cos^2(\xi) - 1}{2} \right] \alpha^{(2)} \right\}$$

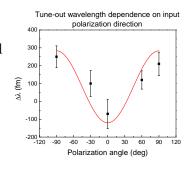
- $\langle \mathcal{V}\cos\chi\rangle = 0$
- Depends on angle of linear polarization w.r.t. plane of rotating magnetic field
- Introduces shift in tune-out wavelength
- Couldn't accurately set ξ prior to taking data
 - Difficult to determine plane of bias rotation
 - Several measurements at different angles of linear polarization
- Remove $\alpha^{(2)}$ term to get $\lambda^{(0)}$

$$\lambda_0(\theta) = \lambda^{(0)} - \frac{\alpha^{(2)}}{d\alpha^{(0)}/d\lambda} \left(\frac{3}{4} \cos^2 \theta - \frac{1}{2} \right)$$

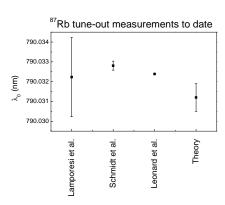
- Measurements at different polarization angles
- Tensor polarizability well resolved
- $\lambda^{(0)}$ zero in scalar polarizability

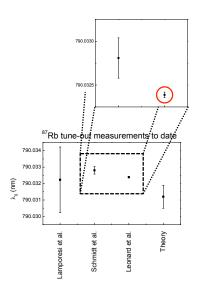
$$\frac{\alpha^{(2)}}{d\alpha^{(0)}/d\lambda} = 538.5(4) \text{ fm}$$

- Straightforward to calculate from theory due to strong dependence on D_1 and D_2
- Zero in scalar polarizability at $\lambda_0 = 790.032388(32)$ nm



- Several other measurements in ⁸⁷Rb
 - Referenced to F = 2 groundstate
- Tune-outs also measured in K, Na, He
 - Larger uncertainties for now

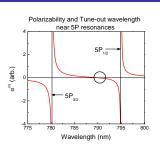


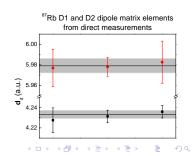


Ratios of Matrix Elements and Benchmarks

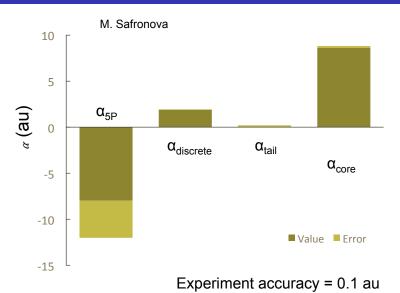
$$\alpha^{(0)} = A + |d_{1/2}|^2 \left(\frac{\alpha_{5P_{1/2}}^{(0)}}{|d_{1/2}|^2} + \frac{\alpha_{5P_{3/2}}^{(0)}}{|d_{3/2}|^2} R \right)$$

- $R = |d_{3/2}/d_{1/2}|^2$
- A includes contributions from α_c , α_{cv} , and valence terms above 5P
 - A = 10.70(12) au from theory
 - $d_{1/2} = 4.233(4)$ au from direct measurements
- From direct measurements, R = 1.995(7)
- From tune-out wavelength, R = 1.99221(3)





Contributions from Theory

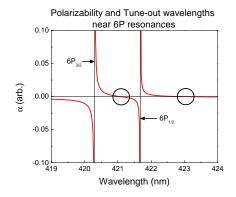


Implications for Theory

- From tune-out wavelength, R = 1.99221(3)
- Benchmark for theory
 - From M. Safronova, R = 1.9919(5)
 - Need to include additional effects
- Breit Interaction
 - Relativistic correction to Coulomb interaction
- QED effects
 - Radiative corrections
- Both effects 5x smaller than theoretical uncertainty
 - Come in at 5×10^{-5} level
 - Compare to 3×10^{-5} from tune-out measurement
 - Need more precise calculations

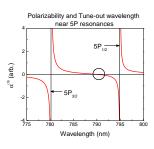
Other Tune-out Wavelengths

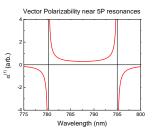
- Tune-out between any two resonances
- More ratios to determine higher lying matrix elements
- Begin to separate out various contributions
- Will also measure vector polarizability



$$U = -\frac{\langle \mathcal{E}^2 \rangle}{2} \left\{ \alpha^{(0)} - \frac{1}{2} \mathcal{V} \cos \chi \, \alpha^{(1)} \right\}$$

- Intentionally introduce circular polarization in controlled manner
- Measure ratio $\alpha^{(1)}/\alpha^{(0)}$ at several points around tune-out wavelength
- What does vector polarizability get us?





Scalar:
$$\alpha^{(0)} = \frac{1}{3\hbar} \sum_{f} |D_{if}|^2 \frac{\omega_{if}}{\omega_{if}^2 - \omega^2} + \alpha_c + \alpha_{cv}^{(0)}$$

Vector:
$$\alpha^{(1)} = \frac{1}{3\hbar} \sum_{f} C_{J'} |D_{if}|^2 \frac{\omega}{\omega_{if}^2 - \omega^2} + \alpha_{cv}^{(1)}$$

■ Look at one pair of n' states

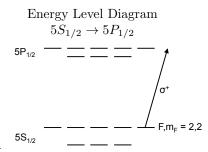
$$\alpha_{n'}^{(0)} = \frac{\omega_{n'_{3/2}}}{\omega_{n'_{3/2}}^2 - \omega^2} |d_{n'_{3/2}}|^2 + \frac{\omega_{n'_{1/2}}}{\omega_{n'_{1/2}}^2 - \omega^2} |d_{n'_{1/2}}|^2$$

$$\alpha_{n'}^{(1)} = \frac{\omega}{\omega_{n'_{3/2}}^2 - \omega^2} |d_{n'_{3/2}}|^2 - 2 \frac{\omega}{\omega_{n'_{1/2}}^2 - \omega^2} |d_{n'_{1/2}}|^2$$

• Contributions from $n'P_{1/2}$ and $n'P_{3/2}$ can be isolated

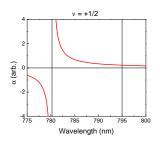
Vector Polarizability Polarization Control

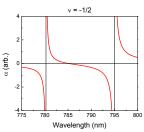
- Pulse for $t << \tau_{TOP}$ and adjust relative phase
 - Fine control over $\langle \cos \chi \rangle$
- Need new method to determine polarization
 - Want $\mathcal{V} = +1$
- Use σ^+ light tuned to D1 resonance
 - No resonant transition
 - Minimize scattering rate using external waveplate



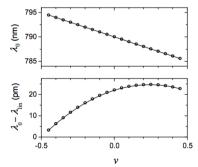
$$\alpha \approx \frac{1}{6} \left(\frac{|D_1|^2 (1 - 2\nu)}{\omega_{1/2} - \omega} + \frac{|D_2|^2 (1 + \nu)}{\omega_{3/2} - \omega} \right)$$

- Circular polarization shifts tune-out location
- ν can vary from -1/2 to +1/2
- Possible to prevent tune-out wavelength altogether
- Tune over 2/3 range between D_1 and D_2
 - 785 nm to 795 nm
- Make measurements of shifted tune-out wavelength





- Adjust $\langle \mathcal{V} \cos \chi \rangle$ in controlled manner
 - $d\lambda_0/d\nu$ almost linear over full range
 - Deviation from linear is of interest
- Deviations on picometer scale
 - Compare to 32 fm uncertainty in tune-out measurement



- Current theoretical values and their uncertainties
 - $\alpha_c = 9.08(5)$ au
 - $\alpha_{cv}^{(0)} = -0.37(4)$ au
 - $\alpha_{cv}^{(1)} \sim -0.04(4)$ au
 - $T_{1/2} = 0.022(22)$ au
 - $T_{3/2} = 0.075(75)$ au
- \bullet $\alpha_{cv}^{(1)}$ approximated from $\alpha_{cv}^{(0)}$
- Tail terms have n' > 12

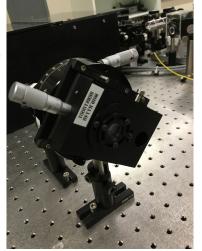
- Polarization and frequency dependence ultimately allow separation of the contributions
- Simulated 3 tune-out and multiple vector polarizability measurements

	Parameter	Model Estimate	Model Error	Fit Error
٦.	$R_{5,3/2}$	1.99221		3×10^{-5}
Ratios-	$R_{6,1/2}$	0.00584	3×10^{-5}	2×10^{-6}
	$R_{6,3/2}$	0.01526	5×10^{-5}	5×10^{-6}
Core-	$\alpha_c + \alpha_{cv}^{(0)}$	8.71	9×10^{-2}	3×10^{-2}
٥٥،٥٦	$\alpha_{cv}^{(1)}$	-0.04	4×10^{-2}	
Tails-{	$ t_{1/2} ^2$	0.009	9×10^{-3}	
Talls	$ t_{3/2} ^2$	0.03	3×10^{-2}	3×10^{-3}

■ Model error based on 790 nm tune-out measurement

- In the process of setting polarization
 - \bullet σ^+ light tuned to D_1 resonance
 - Correcting for chamber birefringence, stray fields, etc.
- Acquired Babinet-Soleil Compensator
 - Calibrate waveplates at different wavelengths
 - Accurately change $\sigma^+ \to \sigma^$ along with field reversal to test polarization and field corrections

Babinet-Soleil Compensator



Conclusions

- Measured longest tune-out wavelength in ⁸⁷Rb
 - $\lambda_0 = 790.032388(32) \text{ nm}$
 - R = 1.99221(3)
- \blacksquare Used R as a benchmark for theory
 - $R_{Theory} = 1.9919(5)$
- Measurements of other tune-out wavelengths
 - Near 420 nm and 360 nm
- Measurements of vector polarizability
 - Separate out contributions beyond what tune-out wavelengths alone can do

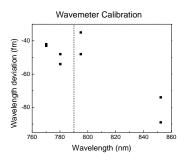
Acknowledgments

Cass Sackett, Advisor Bob Leonard Oat Arpornthip Eddie Moan

Wavemeter Calibration

Add what we used as correction with error bars

- Wavemeter specced to 10^{-6} Not good enough
- Calibrated it using well known lines in several atomic species
 - 39 K D_1
 - 87 Rb D_2
 - 85 Rb D_1
 - 133 Cs D_2



Including Hyperfine Structure

$$\alpha_{5P}^{(0)} = \frac{10}{\hbar\sqrt{15}} \sum_{J',F'} \frac{|d_{J'}|^2 \omega'}{\omega'^2 - \omega^2} (-1)^{1+F'} (2F'+1)$$

$$x \begin{cases} 2 & 1 & F' \\ 1 & 2 & 0 \end{cases} \begin{cases} F' & 3/2 & J' \\ 1/2 & 1 & 2 \end{cases}^2$$

$$\alpha_{5P}^{(1)} = \frac{10}{\hbar\sqrt{15}} \sum_{J',F'} \frac{|d_{J'}|^2 \omega}{\omega'^2 - \omega^2} (-1)^{1+F'} (2F'+1)$$

$$x \begin{cases} 2 & 1 & F' \\ 1 & 2 & 1 \end{cases} \begin{cases} F' & 3/2 & J' \\ 1/2 & 1 & 2 \end{cases}^2$$

$$\alpha_{5P}^{(2)} = \frac{20}{\hbar\sqrt{15}} \sum_{J',F'} \frac{|d_{J'}|^2 \omega'}{\omega'^2 - \omega^2} (-1)^{F'} (2F'+1)$$

$$x \begin{cases} 2 & 1 & F' \\ 1 & 2 & 2 \end{cases} \begin{cases} F' & 3/2 & J' \\ 1/2 & 1 & 2 \end{cases}^2$$

Parity Non Conservation

$$E_{PNC}^{Theory} =$$

$$\sum_{n'=6}^{\infty} \left(\frac{\langle 7S | \mathbf{d} | n' P_{1/2} \rangle \langle n' P_{1/2} | H_{PNC} | 6S \rangle}{E_{6S} - E_{n'} P_{1/2}} + \frac{\langle 7S | H_{PNC} | n' P_{1/2} \rangle \langle n' P_{1/2} | \mathbf{d} | 6S \rangle}{E_{7S} - E_{n'} P_{1/2}} \right)$$

- $Q_W^{SM} = -73.23(2)$
- $Q_W^{Atomic} = -72.58(29)_{Exp}(32)_{Theory}$
- Differ by 1.5σ



Parity Non Conservation

$$\frac{\mathrm{Im}(E_{PNC})}{\beta} = i \frac{Q_W}{\beta N} k_{PNC}$$

- k_{PNC} contains all relevant parity conserving and PNC matrix elements
- Mixing of $S_{1/2}$ and $P_{1/2}$ states
- Weak interaction not parity conserving

