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Chaos: the butterfly effect 

Δ𝑥(0)=𝜖	
Δ𝑥(𝑡)∼ ​𝑒↑𝜆𝑡 𝜖	

Δ𝑥(𝑡)	



•  Chaos	è	ignorance	
•  A	lot	of	chaos	è	new	knowledge!		

•  	 ​𝑥↓𝑖 (𝑡)[​𝑥↓𝑗 (0), ​𝑝↓𝑗 (0)]	very	
complicated.	Looks	random	

• Many-body	chaos	è	thermalization	
•  Thermodynamics	emerges	from	
ignorance.	

Chaos and thermalization 

time	

Temperature	
​𝑇↓1 	

​𝑇↓2 	
𝑇	



• How	about	quantum	mechanics?			

Chaos and thermalization 

It (classical thermodynamics) 
is the only physical theory of 
universal content which I am 
convinced will never be 
overthrown, within the 
framework of applicability of 
its basic concepts. 
 

-- Albert Einstein 



•  𝑖​𝜕/𝜕𝑡 |𝜓⟩=𝐻|𝜓⟩	
• No	actual	chaos	if	Hilbert	space	
dimension	𝐷	is	finite	

•  Initial	condition	Δ𝑥(0)	is	blurred	by	
the	uncertainty	principle	

• Chaos	can	be	defined	in	limit	𝐷→∞	

Quantum chaos 
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Chaos	in	high	
energy	limit	



• Many-body	system	
• Hilbert	space	dimension		
increases	exponentially	

• 𝐷= ​2↑𝑁 	for	spin	chain	
•  State	with	a	finite		
energy	density	𝐸=𝑁𝜖	has	diverging	density	of	state	at	
large	𝑁.	𝜌(𝐸)∝​𝑒↑𝑁𝑠(𝐸) 	

• Quantum	chaos	is	generic	in	the	thermodynamic	limit	
𝑁→∞.	

• Chaos	è	ignorance	
• A	lot	of	chaos	è	new	knowledge!		

Many-body quantum chaos 

1	 2	 …	 N	



• Will	thermalization	be	different	
for	an	isolated	quantum	system?	

•  Quantum	system	is	described	by	
a	density	matrix	𝜌	

• 𝜌=∑𝑛↑▒​𝑝↓𝑛 |𝑛⟩⟨𝑛| 	
•  Von	Neumann	entropy		

𝑆=−𝑡𝑟(𝜌​log�𝜌 )=−∑𝑛↑▒​
𝑝↓𝑛 ​log� ​𝑝↓𝑛   	

•  A	glass	of	“pure	state	water”	has	
no	entanglement	entropy	

• Will	it	taste	different?	
•  No,	unless	you	are	
“exponentionally	sensitive”	

Many-body quantum chaos 

​𝑒↑−𝑖𝑡𝐻 	

⊗	



•  There	is	no	way	to	locally	distinguish	pure	state	water	
from	either	pure	state	water	with	different	initial	
states,	or	mixed	state	water.	

•  Orthogonal	states	|​𝜓↓1 ⟩, | ​𝜓↓2 ⟩	evolves	to	
orthogonal	states	|​𝜓↓1 (𝑡)⟩, | ​𝜓↓2 (𝑡)⟩,	but	the	local	
reduced	density	matrices	​𝜌↓1 (𝑡)≃ ​𝜌↓2 (𝑡) 	are	
almost	the	same.		

•  Thermal	entropy	emerges	from	entanglement	entropy.		

Thermalization from 
entanglement 

Deutsch ’91, Srednicky 
‘94	



•  |𝜓⟩=∑𝑛↑▒√� ​𝑝↓𝑛  ​|𝑛⟩↓𝐴 ⊗ ​|𝑛⟩↓𝐵  	
•  Region	𝐴	is	in	a	mixed	state.		
State	​|𝑛⟩↓𝐴 	has	probability	 ​𝑝↓𝑛 	

• 𝐴	is	entangled	with	its	
complement	𝐵.	

•  ​𝑆↓𝐴 = ​𝑆↓𝐵 =−∑𝑛↑▒​𝑝↓𝑛  ​log� ​𝑝↓𝑛  	
• Mutual	information:		
•  𝐼(𝐴:𝐶)=𝑆(𝐴)+𝑆(𝐶)−𝑆(𝐴𝐶)	
• Measure	of	correlation	between	A	
and	C.	

Entanglement entropy 

														B	A	

														B	A	
C	



•  Thermalization	è	Volume	law		
entropy	for	small	subsystems	

•  Entanglement	is	not	in	simple		
EPR	pair	form.		

•  Thermalization	from	onlocal,		
multipartite	entanglement.	

Entanglement in thermal state 

														B	A	

𝑆	

|
𝐴|	

														B	A	

Entanglement	from	EPR	pairs	 Multipartite	entanglement	



•  Example:	1+1D	Ising	model	
• 𝐻=−𝐽∑𝑛↑▒​𝜎↓𝑛↑𝑧 ​𝜎↓𝑛+1↑𝑧  − ​ℎ↓𝑥 ∑𝑛↑▒​𝜎↓𝑛↑𝑥  − ​

ℎ↓𝑧 ∑𝑛↑▒​𝜎↓𝑛↑𝑧  	
•  ​ℎ↓𝑥 =0	integrable	(equilvalent	to	free	fermions).		
•  Time	evolution	starts	from	a	product	state,	such	as	

|↑↑↑…↑⟩		
	
	

•  Thermalization	𝑆(𝑡)∝𝑡	till	
saturation	

• Absence	of	thermalization:		
exact	solvable	model,	or		
many-body	localization.	

Thermalization after a quench 

𝐴	



•  Entanglement	growth	=	losing	local	information	
•  Localization	=	local	information	stays	local	
(therefore	slower	entanglement	growth)	

Thermalization vs localization 
𝑡	 𝑡	

𝑊∝​log�𝑡 	𝑊∝𝑡	

thermalization	 localization	

Calabrese & Cardy ‘05 
Amico et al RMP ‘08, 
Bardarson, Pollmann, Moore 
‘12	



• Chaos	=	nonlocal	spreading	of	quantum	
information	

• Wanted:	an	entanglement	measure	
of	information	spreading	

•  Trick:	Convert	the	unitary		
operator	 ​𝑒↑−𝑖𝑡𝐻 	into	a	state	in	a	bigger	system		

• Measure	correlation	by	mutual	information	
•  ​𝑒↑−𝑖𝑡𝐻 = ​𝑈↓𝛼𝛽 |𝛼⟩⟨𝛽|→|Ψ⟩= ​1/√�𝐷  ​𝑈↓𝛼𝛽 |𝛼⟩|𝛽⟩	
•  Example:	 ​𝜎↑𝑥 =(█0 1�1 0 )	→​1/√�2  (|↑⟩|↓⟩+|↓⟩|

↑⟩)	
​𝜎↑𝑧 =(█1      0�0 −1 ) →​1/√�2  (|↑⟩|↑⟩−|↓⟩|↓⟩)	

Entanglement measure of chaos 

𝑈		

𝛼	

𝛽	



• Unitary	evolution	è	Maximal	entanglement	
• Correlation	è	mutual	information	
• Operator	scrambling	è	suppression	of	mutual	
information	

• Chaos	è	𝐼(𝐴:𝐵)+𝐼(𝐴:¯𝐵 )≪𝐼(𝐴:𝐵¯𝐵 )	

Entanglement measure of chaos 

𝑈	

𝐴	

𝐵	

𝑈	

𝐴	

𝐵	¯𝐵 	¯𝐵 	

Hosur XLQ Roberts 
Yoshida ‘15	



•  Ising	model	numerics	
• Chaos	⇒I(A:B)	small	as	long	as	𝐴+𝐵<L	(system	
size)	

Entanglement measure of chaos 

𝑈		

𝐴	

𝐵	



•  “Solvable”	chaotic	models:	
• Random	matrix	theory	
Level	statistics	of	a	chaotic	
Hamiltonian	agrees	well	with	that	of	
a	random	matrix.	

• Holographic	duality	
Some	strongly	coupled	quantum	
field	theories	are	dual	to	weakly	
coupled	gravity.	

•  Sachdev-Ye-Kitaev	model	and	
generalizations	

How to get more analytic results? 



• Random	nonlocal	interaction	for	Majorana	fermions	
𝐻=∑𝑖𝑗𝑘𝑙↑▒​𝐽↓𝑖𝑗𝑘𝑙 ​𝜒↓𝑖 ​𝜒↓𝑗 ​𝜒↓𝑘 ​𝜒↓𝑙  �
with	independent	coupling	 ​̄𝐽↓𝑖𝑗𝑘𝑙↑2  = ​𝑁↑− ​3/2  ​
𝐽↑2 .	

•  {​𝜒↓𝑖 , ​𝜒↓𝑗 }=2​𝛿↓𝑖𝑗 	
• 𝑁 Majorana	fermions	= ​𝑁/2  complex	fermions	
•  ​𝜒↓2𝑛−1 = ​𝑐↓𝑛 + ​𝑐↓𝑛↑+ , ​𝜒↓2𝑛 =−𝑖(​𝑐↓𝑛 − ​𝑐↓𝑛↑+ )	
(Bogoliubov	quasiparticles)	

Sachdev-Ye-Kitaev (SYK) model 

Sachdev, Ye, 1993; Kitaev 2015; Maldacena, Stanford 2016	



• Couple	SYK	sites	by	random	coupling.	
•  For	example	in	1d,		

•  Independent	random	couplings		

Gu, XLQ, Stanford ‘16	

Generalized SYK model 



•  ​𝐺↓𝑥 (​𝜏↓1 , ​𝜏↓2 )= ​1/𝑁 ⟨∑𝑖↑▒​𝜒↓𝑖𝑥 (​𝜏↓1 )​𝜒↓𝑖𝑥 (​𝜏↓2 ) ⟩		
as	order	parameter	

•  A	“dynamical	mean-field”	
controlled	by	large-𝑁	

•  Local	criticality:	
	
​𝐺↓𝑥 (​𝜏↓1 , ​𝜏↓2 )∝​|​sin�(​𝜋/𝛽 (​𝜏↓1 − ​𝜏↓2 )) |↑−2Δ .	

• Δ=1/2.	
•  No	fermion	correlation	between		
different	sites.	

•  At	low	temperature	𝐺(𝜔)∝​|𝜔|↑− ​1/2  	

Large-𝑵 solution  solution 

​𝜏↓1 	

​𝜏↓2 	

𝜏	

​𝜏↓1 	

​𝜏↓2 	

(Sachdev,	Ye;	Parcollet,	Georges)	



•  Zero	temperature	entropy	𝑆(𝑇→0)= ​S↓0 	finite	in	
large	𝑁	limit.	

• A	lot	of	low	energy	degrees	of	freedom	

•  Energy	diffusion	𝐷∝​​𝐽↓1↑2 /𝐽 		

Properties of generalized SYK model 

Entropy	per	fermion	

temperature	



•  Interacting	dynamics	evolves	a	single	
fermion	to	multi-fermion	states	

•  Measure:	size	of	the	anti-commutator	
​⟨​{​𝜒↓𝑗𝑦 (𝑡), ​𝜒↓𝑖𝑥 (0)}↑2 ⟩↓𝛽 ∝​1/𝑁 ​
𝑒↑𝜆(𝑡− ​|𝑥−𝑦|/​𝑣↓𝐵  ) 	

• 𝜆=2𝜋𝑇	Lyapunov	exponent	(maximal)	

•  ​𝑣↓𝐵 =√�𝐷𝜆 	butterfly	velocity		

Chaotic dynamics 

𝑡	

​𝜒↓𝑖𝑥 (0)	

𝑡	
𝜒	 𝜒	 ​𝜒↓𝑗𝑦 (𝑡)	

=	∑	

(Maldacena-Shenker-Stanford)	



•  In	more	general	systems,	chaotic	dynamics	can	be	
characterized	by	growth	of	commutator	or	anti-
commutator:	

•  ​⟨​[𝑉(𝑡),𝑊(0)]↑2 ⟩↓𝛽 	
•  This	is	the	many-body		
generalization		
of	Lyapunov	exponent	
	

• −𝑖[​𝑥↓𝑖 (𝑡), ​𝑝↓𝑗 (0)]→​{​𝑥↓𝑖 (𝑡), ​𝑝↓𝑗 (0)}↓𝑃 = ​𝜕​𝑥↓𝑖 (𝑡)/
𝜕​𝑥↓𝑗 (0) ∝​𝑒↑𝜆𝑡 	

Commutator growth and 
Lyapunov 

𝑡	

𝑊(0)	

𝑉(𝑡)	

Larkin, Ovchinnikov 1969	

Shenker-Stanford ’13-14, Kitaev ‘14, Roberts-Stanford 
‘15	



• Usually	chaos	implies		
thermalization	

• Operator	spreads	to	the	whole	
system	in	time	​𝐿/​𝑣↓𝐵  	

• Does	the	SYK	chain	thermalize		
in	that	time?	

•  Study	the	quench	problem	
•  |Ψ(𝑡)⟩= ​𝑒↑−𝑖𝐻𝑡 |​Ψ↓𝑖 ⟩	

Quench and thermalization 
𝑡	

𝑈= ​𝑒↑−𝑖𝐻𝑡 	

𝑡	
𝐴	



• A	trick	to	choose	a	simple	initial	state:	consider	two	
chains.	|Ψ⟩=∑𝑛𝑚↑▒​[​𝑒↑− ​𝛽𝐻/2  ]↓𝑛𝑚 |𝑛⟩|𝑚⟩ 	

• Quench	in	the	two	chain	(ladder)	problem	

The thermal double state 

𝑈= ​𝑒↑−𝑖𝐻𝑡 	 𝑈= ​𝑒↑−𝑖𝐻𝑡 	

​√�𝜌 =𝑒↑− ​𝛽𝐻/2  	

​𝐴↓𝐿 	 ​𝐴↓𝑅 	



• Renyi	entropy	 ​𝑆↓𝑛 = ​1/1−𝑛 ​log�𝑡𝑟(​𝜌↑𝑛 ) 	after	
quench	

•  Surprise:	entropy	does	not	saturate	to	thermal	value	

• Weak	coupled	limit	𝛾→0, 𝑆(∞)∝2( ​𝑆↓𝑡ℎ − ​𝑆↓0 )	

Incomplete thermalization 

𝐿=𝛽𝐽, 𝛾= ​​𝐽↓1↑2 /8𝜋​𝐽↑2  	

𝑡	

​𝑆↓𝑛 
(𝑡)	

​2𝑆↓0 	

Thermal	value	

Gu, Lucas, XLQ, ‘17	



• Non-thermalization	indicates	
that	there	are	localized	
degrees	of	freedom	on	each	site	

• Numer	of	such	degrees		
of	freedom	
∼ ​​𝑆↓0 /​log�2  		

• Coexistence	of	fast	chaotic	mode	that	gives	energy	
diffusion	and	chaos	propagation	and	slow	modes	that	
gives	zero	temperature	entropy	

• Decoupling	in	the	large	𝑁	low	temperature	limit	
•  Finite	𝑁:	thermalization	in	a	long	time?		

Fast and slow modes 
𝑡	



Summary 

• Generic	many-body	systems	are	chaotic	
• Chaos	are	essential	for	thermalization	
• Quantum	entanglement	provides	new	description	to	
chaos	and	thermalization	

•  Solvable	models	can	be	chaotic	
• Generalized	SYK	models	consist	of	a	coexistence	of	
thermalizing	modes	and	localized	modes	



• Chaos	and	thermalization.	
• Quantum	chaos.	Quantum	thermalization	of	isolated	
systems.	

•  Entropy	growth.	ETH.		
• Non-thermalization:	MBL	
• How	to	study	this?	
-	“Chaotic	solvable	models”.	SYK	model.	Generalized	
SYK	model.	Energy	diffusion.	Coexistence	of	
thermalization	and	localization.	Operator	growth	and	
Lyapunov.		
-	More	general:	Measure	of	chaos.	Relation	to	
thermalization.	(Operator	scrambling.	Entanglement	
measure.	Relation	to	thermalization.)	

Outline 



• Non-interacting	system:	
A	particle	has	𝑁	possible	
positions.	
​𝑓↓𝑥 (𝑡)=∑𝑦=1…𝑁↑▒​𝜙↓𝑥 (𝑦)​𝑓↓𝑦 (0) .	

• Generic	interacting	system:	
A	particle	can	decay	into		
multi-particle	states.		
Exponentially	many	final		
states	in	the	Hilbert	space.		

•  ​𝑓↓𝑥 (𝑡)= ​𝜙↓𝑥 (𝑦)​𝑓↓𝑦 (0)+ �
​𝜙↓𝑥 (​𝑦↓1 ​𝑦↓2 ​𝑦↓3 )​𝑓↓​𝑦↓1  ​𝑓↓​𝑦↓2 ↑+ ​𝑓↓​𝑦↓3  +…		

Chaos and operator scrambling 


