UVA HOME  |  CONTACT US
Support UVa's Physics Department! >>
  Cass Sackett   Cass Sackett
Associate Professor , Experimental Atomic, Molecular, and Optical Physics
Ph.D., 1998, Rice

cas8m@Virginia.EDU email   924-6795 tel 104 PLSB Office
  RESEARCH INTERESTS
     

Since its first observation in 1995, the process of Bose-Einstein condensation of atomic gases has captured the imagination of many physicists. In this phenomenon, a large number of atoms come to occupy the same quantum state, causing the normally ethereal wave function to act rather as a classical, observable wave. Our research is focused on developing practical applications for these condensates. In particular, we are developing condensate interferometry, in which the atom wave is coherently separated into pieces which are later recombined. The result of the recombination depends sensitively on the surrounding environment, meaning that it can be used as a sensor for measuring inertial effects like gravity or rotation, and electromagnetic effects like fields or atomic interactions.

Our interferometer uses atoms confined in a magnetic trap, which allows interaction times of up to one second and wave-packet separations of up to half a millimeter. These are very large scales for atomic phenomena, and they illustrate the unusual behavior of quantum system on a macroscopic scale. Current projects include high-precision measurements of gravity, rotation, and atomic polarizability. Longer term goals include studying atom-surface interactions and development of techniques to use entangled states to improve measurement precision.

  RESEARCH GROUP(S)
     

Sackett Group

  SELECTED PUBLICATIONS
     

O. Garcia, B. Deissler, K.J. Hughes, J.M. Reeves and C.A. Sackett, “Bose-Einstein condensate interferometer with macroscopic arm separation”, Physical Review A 74, 031601(R) (2006).

K.J. Hughes, J.H.T. Burke, and C.A. Sackett, “Suspension of Atoms Using Optical Pulses, and Application to Gravimetry”, Physical Review Letters 102, 150403 (2009).

J.H.T. Burke and C.A. Sackett, “Scalable Bose-Einstein-condensate Sagnac interferometer in a linear trap”, Physical Review A 80, 061603(R) (2009).

  CURRENT AND RECENT COURSES
     

PHYS 3150: Electronics Laboratory [Fall]

PHYS 5190: Electronics Lab [Fall]

PHYS 5320: Fundamentals of Photonics [Spring]

PHYS 8220: Fundamentals of Photonics [Spring]