Support UVa's Physics Department! >>
Click here for a printable version of this page.


ics Special Colloquium: Hoxton Lecture

Thursday, April 12, 2012
7:00 PM
Chemistry Building, Room 402
Note special date.
Note special time.
Note special room.
Edward Moses [Host: Brad Cox]
National Ignition Facility
"The National Ignition Facility: Pathway to Energy Security and Physics of the Cosmos"

The National Ignition Facility (NIF), at Lawrence Livermore National Laboratory in Livermore, California, is the world’s most energetic laser system. NIF is capable of producing over 1.8 MJ and 500 TW of ultraviolet light, 100 times more than any other operating laser. Completed in March 2009, it is maturing rapidly and transitioning into the world’s premier high-energy-density science experimental facility, while supporting its strategic security, fundamental science, and energy security missions.

By concentrating intense laser energy into target only millimeters in length, NIF can, for the first time, produce conditions emulating those found in planetary interiors and stellar environments and creating fusion energy to power our future. The extreme conditions of energy density, pressure, and temperature will enable scientists to pursue fundamental science experiments designed to address a range of scientific questions, from observing new states of matter to exploring the origin of ultrahigh-energy cosmic rays. Early experiments have been successfully completed in support of materials equations of state, materials strength, and radiation transport in extreme temperature and pressure conditions.

The National Ignition Campaign, an international effort pursued on the NIF, aims to demonstrate fusion burn and generate more energy output than the laser energy delivered to the target. Achieving this ignition goal will validate the viability of inertial fusion energy (IFE) as a clean source of energy. A laser-based IFE power plant will require advances in high-repetition-rate lasers, large-scale target fabrication, target injection and tracking, and other supporting technologies. These capabilities could lead to an operational prototype IFE power plant in 10 to 15 years. LLNL, in partnership with academia, national laboratories, and industry, is developing a Laser Inertial Fusion Energy (LIFE) baseline design concept and examining technology choices for developing a LIFE prototype power plant.

This talk will describe the unprecedented experimental capabilities of the NIF, its role in strategic security and fundamental science, and the pathway to achieving fusion ignition to create a clean and secure energy future.

To add a speaker, send an email to phys-speakers@Virginia.EDU. Please include the seminar type (e.g. Colloquia), date, name of the speaker, title of talk, and an abstract (if available).